ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
無料
ブラウザよりも高速アクセス!
 

配置間相互作用法

索引 配置間相互作用法

配置間相互作用法(はいちかんそうごさようほう、configuration interaction method、略称: CI 法)は、量子化学において、多電子系におけるボルン-オッペンハイマー近似のもとで非相対論的シュレーディンガー方程式を解くために用いられる線形変分的なポスト-ハートリー-フォック法である。 数学的に「配置」とは、波動関数として用いられるスレイター行列式の線形結合で記述される。軌道の占有数(たとえば(1s)2(2s)2(2p)1...)の観点では、「相互作用」は異なる電子配置(状態)の混ざり合い(相互作用)を意味する。CI計算には必要なCPU時間や巨大なハードウェアが必要なため、CI法の使用は相対的に小さい系に限られる。 ハートリーフォック法では波動関数は1つのスレイター行列式で表す。 しかしCI法では電子相関を考慮しているため、CI法では、スピン軌道(上付きSOで記述される)で構成される配置状態関数(CSF)の線形結合を用いる。 ここで通常はΨは系の電子基底状態である。その後、変分法によって係数c_ \ とその時のエネルギー固有値を求める。 この展開が、適切な対称性の可能なすべての配置状態関数(CSF)を含んでいる場合、これは1粒子基底によって張られた空間で電子のシュレーディンガー方程式を正確に解くFull CI法である。上記の展開における1次項は普通はハートリー-フォック行列式である。他のSCFは、ハートリーフォック行列式から仮想軌道交換されたスピン軌道の数によって分けられる。1つのスピン軌道が異なっていたならば、これを1励起行列式で記述する。2つのスピン軌道が異なっていたならば、2励起行列式である。これはCI空間と呼ばれる展開での行列式の数を制限するのに使われる。 打ち切られた (truncated) CI空間は計算時間を省くのに重要である。たとえば、CID法では2励起だけに限られる。CISD法では1励起と2励起だけに限られる。これらのCID法、CISD法は多くの場合で用いられる。 デビッドソン補正は大きさについての無矛盾性を補正するために使われる。打ち切られたCI法の問題は、無限に離れた2粒子のエネルギーが1粒子のエネルギーの2倍ではないという大きさの矛盾性(size-inconsistency)である。 CI法は一般化行列固有値方程式へとつながる。 ここでcは係数ベクトル、eは固有値行列であり、ハミルトニアンの行列要素、重なり行列の行列要素はそれぞれ以下のようになる。 \boldsymbol_ &.

14 関係: 励起状態多参照配置間相互作用法大きさについての無矛盾性変分法ハートリー=フォック方程式ポスト-ハートリー-フォック法ボルン–オッペンハイマー近似デビッドソン補正シュレーディンガー方程式スレイター行列式結合クラスター法量子化学配置状態関数電子相関

励起状態

励起状態(れいきじょうたい、excited state)とは、量子力学において系のハミルトニアンの固有状態のうち、基底状態でない状態のこと。.

新しい!!: 配置間相互作用法と励起状態 · 続きを見る »

多参照配置間相互作用法

量子化学において、多参照配置間相互作用法 (たさんしょうはいちかんそうごさようほう、multireference configuration interaction method, MRCI法) は、の固有状態を、基底状態に加えて励起状態にも対応する、複数のスレイター行列式の配置間相互作用により展開する計算する手法である。励起を行う元のスレイター行列式は、参照行列式と呼ばれる。より高次の励起行列式(配置状態関数、configuration state function, CSF とも、略して配置とも呼ばれる)は、これらの参照行列式から、ユーザが指定した閾値に従って摂動論的配置を生成したり、もしくは単純に1電子、2電子、... 励起で打ち切って生成する(MRCIS, MRCISD,...)。 基底状態については、複数の参照配置を用いることにより、より良く電子相関を近似することができ、したがってより低エネルギーの状態が得られる。打ち切られた CI 法にまつわるサイズ無矛盾性がないという問題は、より多くの参照配置を用いても解決されない。 MRCI計算を用いることにより、基底状態と励起状態との間でよりバランスの取れた電子相関を計算することができる。定量的に良いエネルギー差(励起エネルギー)を得るためには、参照行列式の選択に気を付ける必要がある。参照空間に励起状態の支配的な配置のみを取り入れると、励起状態のエネルギーに電子相関がとりこまれ、エネルギーが低下する。CIS や CISD では一般的に高すぎる励起エネルギーが得られるが、これが低下することになる。しかし、励起状態は通常、複数の支配的配置から成っており、励起状態のその他の支配的配置が無視されること、また、より高次の(MRCISD なら3電子および4電子の)配置まで取り入れられることにより、基底関数のほうにより多く相関が取り入れられる。 参照の選択は手動で行うことも (\Phi_1, \Phi_2, \Phi_5,...)、自動的に行うことも(いくつかの軌道からなる活性空間内の全ての配置)、半自動的に行うことも(以前の CI もしくは MRCI 計算で重要であることが判っている配置を参照に取り込む)ある。 この手法は、Robert Buenker と により、1970年代に初めて、 Multi-Reference single and Double Configuration Interaction (MRDCI) という名前で実装された。 MRCI法は、半経験的手法に対して実装することもできる。その一つの例として、Walter Thiel らが開発した OM2/MRCI法が挙げられる。.

新しい!!: 配置間相互作用法と多参照配置間相互作用法 · 続きを見る »

大きさについての無矛盾性

量子化学分野において、大きさについての無矛盾性(おおきさについてのむむじゅんせい、size consistency)および示量性(しりょうせい、size extensivity)は系の大きさが変化した場合の計算結果の振る舞いを表す概念である。大きさについての無矛盾性(あるいはstrict separabilityとも)は、距離が離れるなどして分子系における相互作用が無くなった場合、エネルギーの振る舞いが無矛盾であることを保証する。Bartlettにより導入された示量性は、電子数の増加に対して正確に(線形に)スケールするという形式的な数学的性質である。 例えばAとBを相互作用の2つの系としよう。ある理論がエネルギーについて大きさについて無矛盾であるとき、電子密度が共有されていないほど十分にAとBが離れたようなA+Bの系のエネルギーは、Aの系のエネルギーとBの系のエネルギーの和と一致する。 大きさについての無矛盾性は、解離曲線を正しく得る場合に特に重要となる。最近になってポテンシャルエネルギー曲面全体が明確に定義されている必要があると主張されている 。 文献によっては大きさについての無矛盾性と示量性を同じ意味で使用しているが、両者の間には極めて重要な違いがある 。 ハートリー=フォック法、クラスター展開法、(任意次数の)、full CI法は大きさについて無矛盾であるが必ずしも示量性ではない。 例えば制限ハートリー=フォック法は水素分子の解離曲線を正確に記述できず、したがって全てのポスト-ハートリー-フォック法はFull CI法を除き同様である。 形式的に大きさについて無矛盾な手法においても、数値誤差により大きさについて無矛盾ではない振る舞いをすることもある。 は別の関連した性質であり、その要請を励起状態の適切な取り扱いへと拡張している。.

新しい!!: 配置間相互作用法と大きさについての無矛盾性 · 続きを見る »

変分法

解析学の一分野、変分法(へんぶんほう、calculus of variations, variational calculus; 変分解析学)は、汎函数(函数の集合から実数への写像)の最大化や最小化を扱う。汎函数はしばしば函数とその導函数を含む定積分として表される。この分野の主な興味の対象は、与えられた汎函数を最大・最小とするような「極値」函数、あるいは汎函数の変化率を零とする「停留」函数である。 そのような問題のもっとも単純な例は、二点を結ぶ最短の曲線を求める問題である。何の制約も無ければ二点を結ぶ直線が明らかにその解を与えるが、例えば空間上の特定の曲面上にある曲線という制約が与えられていれば、解はそれほど明らかではないし、複数の解が存在し得る。この問題の解は測地線と総称される。関連する話題としてフェルマーの原理は「光は二点を結ぶ最短の光学的長さを持つ経路を通る。ただし光学的長さは間にある物質によって決まる」ことを述べる。これは力学における最小作用の原理に対応する。 重要な問題の多くが多変数函数を含む。ラプラス方程式の境界値問題の解はディリクレの原理を満足する。 は空間内の与えられた周回路の張る面積が最小の曲面()を求める問題であり、しばしばその解を石鹸水に浸した枠が張る石鹸膜として見つけるデモンストレーションを目にする。こうした経験は比較的容易に実験できるけれども、その数学的解釈は簡単とはほど遠い(局所的に最小化する曲面は複数存在し得るし、非自明な位相を持ち得る)。.

新しい!!: 配置間相互作用法と変分法 · 続きを見る »

ハートリー=フォック方程式

ハートリー=フォック方程式(ハートリーフォックほうていしき、Hartree–Fock equation)は、多電子系を表すハミルトニアンの固有関数(波動関数)を一個のスレーター行列式で近似(ハートリー=フォック近似)した場合に、それが基底状態に対する最良の近似となるような(スピンを含む)1電子分子軌道の組を探し出すための方程式である。ウラジミール・フォックによって導かれた。分子軌道法の基本となる方程式である。 ハートリー=フォック方程式 は、\の近似的な解が与えられた場合、方程式中の\置換することで方程式 が誘導される。すなわちこの方程式の\hatには固有関数\psiは含まれず、普通の固有値方程式として解くことが出来る。 これにより得られた解を近似解として適用し再帰的に解く事で、多電子系のフェルミ粒子(この場合は電子)全体の作る平均場と、その中で一粒子運動をするフェルミ粒子の波動関数を自己無撞着に決定することができる(SCF法)。.

新しい!!: 配置間相互作用法とハートリー=フォック方程式 · 続きを見る »

ポスト-ハートリー-フォック法

ポスト-ハートリー–フォック (post-Hartree–Fock) 法とは、ハートリー–フォック法(平均場近似)を超える、より高精度な第一原理計算手法の総称である。代表的なものに、メラー–プレセット (MP) 法、配置間相互作用 (CI) 法、カップルドクラスター (CC) 法がある。何れも波動関数として複数のスレイター行列式の線形結合をとったものを使っており、計算精度を上げるに従って計算コストは飛躍的に増大する。.

新しい!!: 配置間相互作用法とポスト-ハートリー-フォック法 · 続きを見る »

ボルン–オッペンハイマー近似

ボルン–オッペンハイマー近似(ボルン–オッペンハイマーきんじ、)とは、電子と原子核の運動を分離して、それぞれの運動を表す近似法である。この近似は、原子核の質量が電子の質量よりも遥かに大きいために可能となる。 まず、電子状態については、原子核が固定されているものとして、電子波動関数とエネルギー固有値を求めることができる。これにより、ポテンシャルエネルギー曲線(曲面)を核の座標の関数として定義することができる。そして、核の波動関数は、核の運動がこのポテンシャルエネルギー曲面上に乗っているものとして求めることができる。 この近似により、分子の電子波動関数と振動・回転の波動関数を分離して求めることが可能になる。また、分子の励起に伴う振動状態の分布に関する、フランク=コンドンの原理も説明することができる。.

新しい!!: 配置間相互作用法とボルン–オッペンハイマー近似 · 続きを見る »

デビッドソン補正

デビッドソン補正(デビッドソンほせい、)とは打ち切られた配置間相互作用法においてしばしば用いられるエネルギー補正である。エルンスト・デビッドソンが導入した。 限られた項数の配置間相互作用展開の結果からエネルギーを推定することができる。より正確に言えば、4次までの励起項を含む配置間相互作用 (CISDTQ) エネルギーを2次までの配置間相互作用法 (CISD) のエネルギーから推定する。次の式を用いる。 ここで、a0 は CISD 展開時のハートリー=フォック波動関数の係数であり、ECISD および EHF はそれぞれ CISD 波動関数およびハートリー=フォック波動関数のエネルギー、ΔEQ は ECISDTQ, すなわち CISDTQ 波動関数のエネルギーを推定するための補正である。この近似式は摂動理論による解析に基いている。したがって、デビッドソン補正を含む CISD 計算は頻繁に CISD(Q) と表記される。.

新しい!!: 配置間相互作用法とデビッドソン補正 · 続きを見る »

シュレーディンガー方程式

ュレーディンガー方程式(シュレーディンガーほうていしき、Schrödinger equation)とは、物理学の量子力学における基礎方程式である。 シュレーディンガー方程式という名前は、提案者であるオーストリアの物理学者エルヴィン・シュレーディンガーにちなむ。1926年にシュレーディンガーは量子力学の基礎理論に関する一連の論文を提出した。 シュレーディンガー方程式の解は一般的に波動関数と呼ばれる。波動関数はまた状態関数とも呼ばれ、量子系(電子など量子力学で取り扱う対象)の状態を表す。シュレーディンガー方程式は、ある状況の下で量子系が取り得る量子状態を決定し、また系の量子状態が時間的に変化していくかを記述する。あるいは、波動関数を量子系の状態を表すベクトルの成分と見た場合、シュレーディンガー方程式は状態ベクトルの時間発展方程式に置き換えられる。状態ベクトルによる記述は波動関数を用いた場合と異なり物理量の表現によらないため、より一般的である。シュレーディンガー方程式では、波動関数や状態ベクトルによって表される量子系の状態が時間とともに変化するという見方をする。状態が時間変化するという考え方はシュレーディンガー描像と呼ばれる。 シュレーディンガー方程式はその形式によっていくつかの種類に分類される。ひとつの分類は時間依存性で、時間に依存するシュレーディンガー方程式と時間に依存しないシュレーディンガー方程式がある。時間に依存するシュレーディンガー方程式(time-dependent Schrödinger equation; TDSE)は、波動関数の時間的変化を記述する方程式であり、波動関数の変化の仕方は波動関数にかかるハミルトニアンによって決定される。解析力学におけるハミルトニアンは系のエネルギーに対応する関数だったが、量子力学においてはエネルギー固有状態を決定する作用素物理学の文献において作用素は演算子とも呼ばれる。以下では作用素の意味で演算子という語を用いる。である。 時間に依存しないシュレーディンガー方程式(time-independent Schrödinger equation; TISE)はハミルトニアンの固有値方程式である。時間に依存しないシュレーディンガー方程式は、系のエネルギーが一定に保たれる閉じた系に対する波動関数を決定する。 シュレーディンガー方程式のもう1つの分類として、方程式の線型性がある。通常、線型なシュレーディンガー方程式は単にシュレーディンガー方程式と呼ばれる。線型なシュレーディンガー方程式は斉次方程式であるため、方程式の解となる波動関数の線型結合もまた方程式の解となる。 非線型シュレーディンガー方程式(non-linear Schrödinger equation; NLS)は、通常のシュレーディンガー方程式におけるハミルトニアンにあたる部分が波動関数自身に依存する形の方程式である。シュレーディンガー方程式に非線型性が現れるのは例えば、複数の粒子が相互作用する系について、相互作用ポテンシャルを平均場近似することにより一粒子に対するポテンシャルに置き換えることによる。相互作用ポテンシャルが求めるべき波動関数自身に依存する一体ポテンシャルとなる場合、方程式は非線型となる(詳細は例えばハートリー=フォック方程式、グロス=ピタエフスキー方程式などを参照)。本項では主に線型なシュレーディンガー方程式について述べる。.

新しい!!: 配置間相互作用法とシュレーディンガー方程式 · 続きを見る »

スレイター行列式

レイター行列式(スレイターぎょうれつしき、Slater determinant)とは、フェルミ粒子からなる多粒子系の状態を記述する波動関数を表すときに使われる行列式である。この行列式は2つの電子(または他のフェルミ粒子)の交換に関して符号を変化させることによって反対称性の必要条件と、その結果としてパウリの排他原理を満たすMolecular Quantum Mechanics Parts I and II: An Introduction to QUANTUM CHEMISTRY (Volume 1), P.W. Atkins, Oxford University Press, 1977, 。名称は1929年に波動関数の反対称性を保証する手段としてこの行列式を導入したジョン・クラーク・スレイターに因むが、この行列式の形式での波動関数はそれより3年前にハイゼンベルクとディラックの論文において最初に独立に登場していた。 量子論では複数の同種粒子は原理的に区別できない(エンタングルしている)。よって複数の同種粒子を含む系の状態ベクトルは一定の対称性を持つものに限られる。その対称性は、任意の2個の粒子を入れ替えることに対して、ボーズ粒子では対称性をもつ波動関数、フェルミ粒子では反対称性をもつ波動関数という、少し不自然にも見える形で現れる。この不自然さは、個々の粒子に別々の「位置」を割り当てるのは粒子が区別できることが大前提であるのに、区別ができない粒子にそれをやってしまったことによる。 スレイター行列式は、複数のフェルミ粒子系の波動関数が持っている反対称性と同じ性質を持っている。またスレイター行列式の線形結合も反対称性を満たす。よって多電子系などを表すときに、スレイター行列式は便利なのでよく用いられる。.

新しい!!: 配置間相互作用法とスレイター行列式 · 続きを見る »

結合クラスター法

結合クラスター法(けつごうクラスターほう、クラスター展開法、CC法:Coupled Cluster)は多体系を記述するために使われる数値手法である。最もよく使われるのは、量子化学(計算化学)におけるポスト-ハートリー-フォック第一原理計算がある。CC法は、ハートリーフォック分子軌道法を基本にして、電子相関を考慮する指数関数クラスター演算子を使って多電子波動関数を構成する。CC法を用いて、小さい分子や中程度の大きさの分子について最も正確な計算を行うことができる。.

新しい!!: 配置間相互作用法と結合クラスター法 · 続きを見る »

量子化学

量子化学(りょうしかがく、quantum chemistry)とは理論化学(物理化学)の一分野で、量子力学の諸原理を化学の諸問題に適用し、原子と電子の振る舞いから分子構造や物性あるいは反応性を理論的に説明づける学問分野である。.

新しい!!: 配置間相互作用法と量子化学 · 続きを見る »

配置状態関数

量子化学において、配置状態関数(はいちじょうたいかんすう、configuration state function、CSF)はスレイター行列式の対称性適応形の線形結合である。CSFは電子配置とは混同しがちだが、別物である。.

新しい!!: 配置間相互作用法と配置状態関数 · 続きを見る »

電子相関

電子相関(でんしそうかん、electron correlation)とは、多電子系における電子間の位置の相関のこと。また電子相関エネルギーEcorr とは、多電子系における正確なエネルギーEexact とハートリー‐フォック近似によって計算したエネルギーEHF との差として定義される。 つまり多電子系における電子間の相互作用をハートリー-フォック法で扱った場合、電子相関の一部しか取り込めていない。.

新しい!!: 配置間相互作用法と電子相関 · 続きを見る »

ここにリダイレクトされます:

CI法配置間相互作用

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »