ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
無料
ブラウザよりも高速アクセス!
 

Arithmetica Universalis

索引 Arithmetica Universalis

Arithmetica Universalis (Universal Arithmetic, 普遍算術、ふへんさんじゅつ) はアイザック・ニュートンによる数学書。原文はニュートンの講義ノートを基にラテン語で書かれ、ウィリアム・ホイストン によって編集、出版された。ホイストンはニュートンからケンブリッジ大学のルーカス教授職を継いだ人である。 ホイストンによる初版は1707年に出版され、ジョセフ・ラフソン (Joseph Raphson) によって翻訳された英語版は の題で1720年に出版された。また、ラテン語第二版はジョン・マチン によって1722年に出版されている。 ニュートン自身は Arithmetica の出版に不満を持っており、彼の名前が記されることを頑なに拒否したため、これらの版のいずれもニュートンの名は著者として記されていない。 実際、ホイストンによる初版が出版されたときニュートンは非常に狼狽し、刊行されたものすべてを買い占め、処分することを考えたという。 Arithmetica には代数における記法、算術、幾何学と代数学の関係、方程式の解についてが記されている。ニュートンはデカルトの符号律を複素数根について適用し、代数方程式の複素数根の個数が符号律から決まることを、証明なしに要請している。150 年間、このニュートンの方法に厳密な証明が与えられることはなかった (ジェームズ・ジョセフ・シルベスター による証明は1865年。 のことか)。.

30 関係: 加法幾何学乗法代数学ラテン語ルネ・デカルトルーカス教授職ブルック・テイラーテイラーの定理テイラー展開ニュートン算アイザック・ニュートンウィリアム・ホイストンケンブリッジ大学コリン・マクローリンジョン・マチンジェームス・ジョセフ・シルベスター光学 (アイザック・ニュートン)約数複素数開平法自然哲学の数学的諸原理除法減法数学1707年1720年1722年1769年1865年

加法

加法(かほう、addition, summation)とは、数を合わせることを意味する二項演算あるいは多項演算で、四則演算のひとつ。足し算(たしざん)、加算(かさん)、あるいは寄せ算(よせざん)とも呼ばれる。また、加法の演算結果を和(わ、)という。記号は「+」。 自然数の加法は、しばしば物の個数を加え合わせることに喩えられる。また数概念の拡張にしたがって、別の意味を持つ加法を考えることができる。たとえば実数の加法は、もはや自然数の加法のように物の個数を喩えに出すことはできないが、曲線の長さなど別の対象物を見出すことができる。 減法とは互いに逆の関係にあり、また例えば、負の数の加法として減法が捉えられるなど、加法と減法の関連は深い。これは代数学において加法群の概念として抽象化される。 無限個の数を加えること(総和法)については総和、級数、極限、ε–δ 論法などを参照。.

新しい!!: Arithmetica Universalisと加法 · 続きを見る »

幾何学

最先端の物理学でも用いられるカラビ-ヤウ多様体の一種。現代幾何学では図も書けないような抽象的な分野も存在する。 幾何学(きかがく、)は、図形や空間の性質について研究する数学の分野である広辞苑第六版「幾何学」より。イエズス会マテオ・リッチによる geometria の中国語訳である。以前は geometria の冒頭の geo- を音訳したものであるという説が広く流布していたが、近年の研究により否定されている。 もともと測量の必要上からエジプトで生まれたものだが、人間に認識できる図形に関する様々な性質を研究する数学の分野としてとくに古代ギリシャにて独自に発達しブリタニカ国際大百科事典2013小項目版「幾何学」より。、これらのおもな成果は紀元前300年ごろユークリッドによってユークリッド原論にまとめられた。その後中世以降のヨーロッパにてユークリッド幾何学を発端とする様々な幾何学が登場することとなる。 幾何学というとユークリッド幾何学のような具体的な平面や空間の図形を扱う幾何学が一般には馴染みが深いであろうが、対象や方法、公理系などが異なる多くの種類の幾何学が存在し、現代においては微分幾何学や代数幾何学、位相幾何学などの高度に抽象的な理論に発達・分化している。 現代の日本の教育では、体系的な初等幾何学はほぼ根絶されかけたが、近年、中・高の数学教育で線型幾何/代数幾何を用いない立体を含む、本格的な綜合幾何は見直されつつある。.

新しい!!: Arithmetica Universalisと幾何学 · 続きを見る »

乗法

算術における乗法 (じょうほう、multiplication) は、算術の四則と呼ばれるものの一つで、整数では、一方の数 (被乗数、ひじょうすう、multiplicand) に対して他方の数 (乗数、じょうすう、multiplier) の回数だけ繰り返し和をとる(これを掛けるまたは乗じるという。)ことにより定義できる演算である。掛け算(かけざん)、乗算(じょうざん)とも呼ばれる。代数学においては、変数の前の乗数(例えば 3y の 3)は係数(けいすう、coefficient)と呼ばれる。 逆の演算として除法をもつ。乗法の結果を積 (せき、product) と呼ぶ。 乗法は、有理数、実数、複素数に対しても拡張定義される。また、抽象代数学においては、一般に可換とは限らない二項演算に対して、それを乗法、積などと呼称する(演算が可換である場合はしばしば加法、和などと呼ぶ)。.

新しい!!: Arithmetica Universalisと乗法 · 続きを見る »

代数学

代数学(だいすうがく、algebra)は数学の一分野で、「代数」 の名の通り数の代わりに文字を用いて方程式の解法を研究する学問として始まった。しかし19世紀以降の現代数学においては、ヒルベルトの公理主義やブルバキスタイルに見られるように、代数学はその範囲を大きく広げているため、「数の代わりに文字を用いる数学」や「方程式の解法の学問」という理解の仕方は必ずしも適当ではない。現代数学においては、方程式の研究は方程式論(代数方程式論)という代数学の古典的一分野として捉えられている。現在は代数学と言えば以下の抽象代数学をさすのが普通である。 現代代数学は、一般的に代数系を研究する学問分野であると捉えられている。以下に示す代数学の諸分野の名に現れる半群・群・環・多元環(代数)・体・束は代数系がもつ代表的な代数的構造である。 群・環・多元環・体の理論はガロアによる代数方程式の解法の研究などに起源があり、束論はブールによる論理学の数学的研究などに起源がある。 半群は、群・環・多元環・体・束に共通する最も原始的な構造である。 現代日本の大学では 1, 2 年次に、微分積分学と並んで、行列論を含む線型代数学を教えるが、線型代数学は線型空間という代数系を対象とすると共に、半群・群・環・多元環・体と密接に関連し、集合論を介して、また公理論であるために論理学を介して、束とも繋がっている。 現代ではまた、代数学的な考え方が解析学・幾何学等にも浸透し、数学の代数化が各方面で進んでいる。ゆえに、代数学は数学の諸分野に共通言語を提供する役割もあるといえる。.

新しい!!: Arithmetica Universalisと代数学 · 続きを見る »

ラテン語

ラテン語(ラテンご、lingua latina リングア・ラティーナ)は、インド・ヨーロッパ語族のイタリック語派の言語の一つ。ラテン・ファリスク語群。漢字表記は拉丁語・羅甸語で、拉語・羅語と略される。.

新しい!!: Arithmetica Universalisとラテン語 · 続きを見る »

ルネ・デカルト

ルネ・デカルト(René Descartes、1596年3月31日 - 1650年2月11日)は、フランス生まれの哲学者、数学者。合理主義哲学の祖であり、近世哲学の祖として知られる。.

新しい!!: Arithmetica Universalisとルネ・デカルト · 続きを見る »

ルーカス教授職

ルーカス教授職(ルーカスきょうじゅしょく、)は、ケンブリッジ大学の数学関連分野の教授職の一つ。ニュートン、バベッジ、ストークス、ディラック、ホーキングなどが務めたきわめて名誉ある地位である。.

新しい!!: Arithmetica Universalisとルーカス教授職 · 続きを見る »

ブルック・テイラー

ブルック・テイラー(Sir Brook Taylor, 1685年8月18日 - 1731年12月29日)は、イギリスの数学者。.

新しい!!: Arithmetica Universalisとブルック・テイラー · 続きを見る »

テイラーの定理

''n''(''x'' − 1)''k''''f''(''k'')(1)/''k''! による近似 微分積分学において、テイラーの定理(テイラーのていり、Taylor's theorem)は、k 回微分可能な関数の与えられた点のまわりでの近似を k 次のテイラー多項式によって与える。解析関数に対しては、与えられた点におけるテイラー多項式は、そのテイラー級数を有限項で切ったものである。テイラー級数は関数を点のある近傍において完全に決定する。「テイラーの定理」の正確な内容は1つに定まっているわけではなくいくつかのバージョンがあり、状況に応じて使い分けられる。バージョンのいくつかは関数のテイラー多項式による近似誤差の明示的な評価を含んでいる。 テイラーの定理は1712年に1つのバージョンを述べた数学者ブルック・テイラー (Brook Taylor) にちなんで名づけられている。しかし誤差の明示的な表現はかなり後になってジョゼフ=ルイ・ラグランジュ (Joseph-Louis Lagrange) によってはじめて与えられた。結果の初期のバージョンはすでに1671年にジェームス・グレゴリー (James Gregory) によって言及されている。 テイラーの定理は微分積分学の入門レベルで教えられ、解析学の中心的な初等的道具の1つである。純粋数学ではより進んだの入り口であり、より応用的な分野の数値計算や数理物理学においてよく使われている。テイラーの定理は任意次元 n, m の多変数ベクトル値関数 にも一般化する。テイラーの定理のこの一般化は微分幾何学や偏微分方程式において現れるいわゆるの定義の基礎である。 n の大きさを評価することで、近似がどれだけ正確であるかが分かる。f が無限回微分可能であり、Rn が0に収束する場合、すなわち である場合、f(x) はテイラー展開が可能である。そのとき f は解析的(analytic)であるといわれる。 テイラーの定理は平均値の定理を一般化したものになっている。実際、上の式において n.

新しい!!: Arithmetica Universalisとテイラーの定理 · 続きを見る »

テイラー展開

数学において、テイラー級数 (Taylor series) は関数のある一点での導関数たちの値から計算される項の無限和として関数を表したものである。そのような級数を得ることをテイラー展開という。 テイラー級数の概念はスコットランドの数学者ジェームズ・グレゴリーにより定式化され、フォーマルにはイギリスの数学者ブルック・テイラーによって1715年に導入された。0 を中心としたテイラー級数は、マクローリン級数 (Maclaurin series) とも呼ばれる。これはスコットランドの数学者コリン・マクローリンにちなんでおり、彼は18世紀にテイラー級数のこの特別な場合を積極的に活用した。 関数はそのテイラー級数の有限個の項を用いて近似することができる。テイラーの定理はそのような近似による誤差の定量的な評価を与える。テイラー級数の最初のいくつかの項として得られる多項式はと呼ばれる。関数のテイラー級数は、その関数のテイラー多項式で次数を増やした極限が存在すればその極限である。関数はそのテイラー級数がすべての点で収束するときでさえもテイラー級数に等しいとは限らない。開区間(あるいは複素平面の開円板)でテイラー級数に等しい関数はその区間上の解析関数と呼ばれる。.

新しい!!: Arithmetica Universalisとテイラー展開 · 続きを見る »

ニュートン算

ニュートン算は、算数や数学の文章題の一つ。速さや仕事に関する問題の応用ともいえる。 仕事算(ここで例示する「仕事算」は広義の帰一算にカテゴライズされる場合が多い。いわゆる仕事算についてはその記事を参照のこと)は、ある仕事を仕上げるための労働力(人数)とそれにかかる時間とが互いに反比例する関係にあり、これをもとにして解くものである。これに対してニュートン算では、仕事を片付けている間にも一定の速さで仕事を増やす(邪魔する)または減らす(協力する)作用が働いているため、反比例の考え方をもとにするだけでは解くことができない。 牧場の牧草と、それを食べる牛を考える。上の例と違うのは、牧草は日が過ぎるにつれて新しく生えてくる点である。ある時点で牛 10 頭を放牧すると 7 日で草を食べ尽くすとする。牛が 12 頭ならば 7 日よりも早く草はなくなるし、8 頭ならば草を食べ尽くすまでに 7 日よりも多くの時間がかかるであろう。しかし、牛の頭数と食べ尽くすまでの日数が反比例しているわけではない。この考え方を背景にしているのがニュートン算である。具体的な題材として、水とポンプ・草と草食動物・行列とチケット売り場・駐車場と入場ゲートなどが用いられる。なお実際の入試問題では、生えてくる量が食べる量以上である、すなわち「食べ尽くすことができない」状況も出題されているので注意すること。 ニュートン算は基本的に仕事算の応用であるが、旅人算や体積・容積の問題とも関係している。。.

新しい!!: Arithmetica Universalisとニュートン算 · 続きを見る »

アイザック・ニュートン

ウールスソープの生家 サー・アイザック・ニュートン(Sir Isaac Newton、ユリウス暦:1642年12月25日 - 1727年3月20日、グレゴリオ暦:1643年1月4日 - 1727年3月31日ニュートンの生きていた時代のヨーロッパでは主に、グレゴリオ暦が使われ始めていたが、当時のイングランドおよびヨーロッパの北部、東部ではユリウス暦が使われていた。イングランドでの誕生日は1642年のクリスマスになるが、同じ日がグレゴリオ暦では1643年1月4日となる。二つの暦での日付の差は、ニュートンが死んだときには11日にも及んでいた。さらに1752年にイギリスがグレゴリオ暦に移行した際には、3月25日を新年開始の日とした。)は、イングランドの自然哲学者、数学者、物理学者、天文学者。 主な業績としてニュートン力学の確立や微積分法の発見がある。1717年に造幣局長としてニュートン比価および兌換率を定めた。ナポレオン戦争による兌換停止を経て、1821年5月イングランド銀行はニュートン兌換率により兌換を再開した。.

新しい!!: Arithmetica Universalisとアイザック・ニュートン · 続きを見る »

ウィリアム・ホイストン

ウィリアム・ホイストン(William Whiston、1667年12月9日 - 1752年8月22日)は、イギリスの神学者・歴史家・数学者。経度法を推進した。.

新しい!!: Arithmetica Universalisとウィリアム・ホイストン · 続きを見る »

ケンブリッジ大学

ンブリッジ大学(University of Cambridge)は、イギリスの大学都市ケンブリッジに所在する総合大学であり、イギリス伝統のカレッジ制を特徴とする世界屈指の名門大学である。中世に創設されて以来、英語圏ではオックスフォード大学に次ぐ古い歴史をもっており、アンシャン・ユニヴァシティーに属する。 ハーバード大学、シカゴ大学、オックスフォード大学等と並び、各種の世界大学ランキングで常にトップレベルの優秀な大学として評価されており、公式のノーベル賞受賞者は96人(2016年12月現在)と、世界の大学・研究機関で最多(内、卒業生の受賞者は65人)。総長はで、副総長は。 公式サイトでは国公立大学(Public University)と紹介している。法的根拠が国王の勅許状により設立された自治団体であること、大学財政審議会(UFC)を通じて国家から国庫補助金の配分を受けており、大学規模や文科・理科の配分比率がUFCにより決定されていること、法的性質が明らかに違うバッキンガム大学等の私立大学が近年新設されたことによる。ただし、自然発生的な創立の歴史や高度な大学自治、独自の財産と安定収入のあるカレッジの存在、日本でいう国公立大学とは解釈が異なる。 アメリカ、ヨーロッパ、アジア、アフリカ各国からの留学生も多い。2005年現在、EU外からの学生は3,000人を超え、日本からの留学生も毎年十数人~数十人規模となっている。研究者の交流も盛んで、日本からの在外訪問研究者も多い。.

新しい!!: Arithmetica Universalisとケンブリッジ大学 · 続きを見る »

コリン・マクローリン

リン・マクローリン(Colin Maclaurin, 1698年2月 - 1746年6月14日)は、スコットランドの数学者である。マクローリン展開で知られる。.

新しい!!: Arithmetica Universalisとコリン・マクローリン · 続きを見る »

ジョン・マチン

ョン・マチン(John Machin, 1680年頃洗礼 — 1751年6月9日) はの天文学教授であり、王立協会特別研究員であった。今日ではマチンの公式の発見者として、円周率 π に素早く収束する級数を見出したことでよく知られる。 テイラー展開やテイラーの定理の発見者として知られるブルック・テイラーは、マチンのケンブリッジ大学セント・ジョンズ・カレッジ (St. John's College, Cambridge) での教え子であった。.

新しい!!: Arithmetica Universalisとジョン・マチン · 続きを見る »

ジェームス・ジョセフ・シルベスター

ェームス・ジョセフ・シルベスター(James Joseph Sylvester, 1814年9月3日 - 1897年3月15日)は、イギリスの数学者。 1838年からユニヴァーシティ・カレッジ・ロンドン教授、1877年に渡米してジョンズ・ホプキンス大学教授、1883年からオックスフォード大学の幾何学の Savillian 教授を歴任した。1839年王立協会フェロー選出。 w:American Journal of Mathematicsを創刊。シルベスター行列などに名を残している。.

新しい!!: Arithmetica Universalisとジェームス・ジョセフ・シルベスター · 続きを見る »

光学 (アイザック・ニュートン)

『光学』(こうがく、Opticks)は、アイザック・ニュートンの主著のひとつで、光学研究の著作岩波哲学思想事典、岩波書店、1998年 pp.484-485。1704年刊。.

新しい!!: Arithmetica Universalisと光学 (アイザック・ニュートン) · 続きを見る »

約数

数学において、整数 の約数(やくすう、divisor)とは、 を割り切る整数またはそれらの集合のことである。割り切るかどうかということにおいて、符号は本質的な問題ではないため、 を正の整数(自然数)に、約数は正の数に限定して考えることも多い。自然数や整数の範囲でなく文字式や抽象代数学における整域などで「約数」と同様の意味を用いる場合は、「因数」(いんすう)、「因子」(いんし、factor)が使われることが多い。 整数 が整数 の約数であることを、記号 | を用いて と表す。 約数の定義を式で表すと、「整数 が の約数であるとは、ある整数 をとると が成立することである」であるが、条件「」を外すこともある(その場合、 のとき も約数になる)。 自然数(正の整数)で考えている文章では、ことわりがなくても「約数」を前提にしていることは多い。.

新しい!!: Arithmetica Universalisと約数 · 続きを見る »

複素数

数学における複素数(ふくそすう、complex number)は、実数の対 と と線型独立な(実数ではない)要素 の線型結合 の形に表される数(二元数: 実数体上の二次拡大環の元)で、基底元 はその平方が になるという特別な性質を持ち虚数単位と呼ばれる。 複素数全体の成す集合を太字の あるいは黒板太字で と表す。 は、実数全体の成す集合 と同様に、可換体の構造を持ち、とくに を含む代数閉体を成す。複素数体はケイリー–ディクソン代数(四元数、八元数、十六元数など)の基点となる体系であり、またさまざまな超複素数系の中で最もよく知られた例である。 複素数の概念は、一次元の実数直線を二次元の複素数平面に拡張する。複素数は自然に二次元平面上に存在すると考えることができるから、複素数全体の成す集合上に自然な大小関係(つまり全順序)をいれることはできない。すなわち は順序体でない。 ある数学的な主題や概念あるいは構成において、それが複素数体を基本の体構造として考えられているとき、そのことはしばしばそれら概念等の名称に(おおくは接頭辞「複素-」を付けることで)反映される。例えば、複素解析、複素行列、複素(係数)多項式、複素リー代数など。.

新しい!!: Arithmetica Universalisと複素数 · 続きを見る »

開平法

開平法(かいへいほう、extraction of square root)とは、正の数の平方根の小数表示を求めていくアルゴリズムである。開平や開平算、開平計算とも。平方根を求めることを開平するという。開法の一種。.

新しい!!: Arithmetica Universalisと開平法 · 続きを見る »

自然哲学の数学的諸原理

ニュートン自身が所有していたプリンキピアの初版。ニュートン自身によって手書きで文字が書き込んである。第二版で修正・加筆する箇所の指示である。 『自然哲学の数学的諸原理』(しぜんてつがくのすうがくてきしょげんり、Philosophiæ Naturalis Principia Mathematica)は、アイザック・ニュートンの著書のひとつで、ニュートンの力学体系を解説した書。1687年刊、全3巻。古典力学の基礎を築いた画期的な著作で、近代科学における最も重要な著作の1つ。運動の法則を数学的に論じ、天体の運動や万有引力の法則を扱っている。Principia という略称でもよく知られている。日本語では『自然哲学の数学的原理』、『プリンキピア』、あるいは『プリンシピア』とも表記される(岡邦雄訳、春秋社、1930年や、中野猿人訳、講談社、1977年等々)。.

新しい!!: Arithmetica Universalisと自然哲学の数学的諸原理 · 続きを見る »

除法

法(じょほう、division)とは、乗法の逆演算であり四則演算のひとつに数えられる二項演算の一種である。除算、割り算とも呼ばれる。 除法は ÷ や /, % といった記号を用いて表される。除算する 2 つの数のうち一方の項を被除数 (dividend) と呼び、他方を除数 (divisor) と呼ぶ。有理数の除法について、その演算結果は被除数と除数の比を与え、分数を用いて表すことができる。このとき被除数は分子 (numerator)、除数は分母 (denominator) に対応する。被除数と除数は、被除数の右側に除数を置いて以下のように表現される。 除算は商 (quotient) と剰余 (remainder) の 2 つの数を与え、商と除数の積に剰余を足したものは元の被除数に等しい。 剰余は余りとも呼ばれ、除算によって「割り切れない」部分を表す。剰余が 0 である場合、「被除数は除数を割り切れる」と表現され、このとき商と除数の積は被除数に等しい。剰余を具体的に決定する方法にはいくつかあるが、自然数の除法については、剰余は除数より小さくなるように取られる。たとえば、 を で割った余りは 、商は となる。これらの商および剰余を求める最も原始的な方法は、引けるだけ引き算を行うことである。つまり、 を で割る例では、 から を 1 回ずつ引いていき()、引かれる数が より小さくなるまで引き算を行ったら、その結果を剰余、引き算した回数を商とする。これは自然数の乗法を足し算によって行うことと逆の関係にある。 剰余を与える演算に % などの記号を用いる場合がある。 除数が である場合、除数と商の積は必ず になるため商を一意に定めることができない。従ってそのような数 を除数とする除法の商は未定義となる(ゼロ除算を参照)。 有理数やそれを拡張した実数、複素数における除法では、整数や自然数の除法と異なり剰余は用いられず、 という関係が除数が 0 の場合を除いて常に成り立つ。この関係は次のようにも表すことができる。 実数などにおける定義から離れると、除法は乗法を持つ代数的構造について「乗法の逆元を掛けること」として一般化することができる。一般の乗法は交換法則が必ずしも成り立たないため、除法も左右 2 通り考えられる。.

新しい!!: Arithmetica Universalisと除法 · 続きを見る »

減法

減法(げんぽう、subtraction)は、一方から一部として他方を取り去ることにより両者の間の差分を求める二項演算で、算術における四則演算の 1 つ。計算することの側面を強調して引き算(ひきざん)、減算(げんさん、げんざん)などとも言う。また、引き算を行うことを「( から) を引く」 と表現する。引く数を減数(げんすう、subtrahend)と呼び引かれる数を被減数(ひげんすう、minuend)と呼ぶ。また、減算の結果は差(さ、difference)と呼ばれる。 抽象代数学において減法は多くの場合、加法の逆演算として定式化されて加法に統合される。たとえば自然数の間の減法は、整数への数の拡張により、数を引くことと負の数を加えることとが同一視されて、減法は加法の一部となる。またこのとき、常に大きいものから小さいものを減算することしかできない自然数の体系に対して、整数という体系では減算が自由に行えるようになる(整数の全体は、逆演算として減法を内包した加法に関してアーベル群になる)。.

新しい!!: Arithmetica Universalisと減法 · 続きを見る »

数学

数学(すうがく、μαθηματικά, mathematica, math)は、量(数)、構造、空間、変化について研究する学問である。数学の範囲と定義については、数学者や哲学者の間で様々な見解がある。.

新しい!!: Arithmetica Universalisと数学 · 続きを見る »

1707年

記載なし。

新しい!!: Arithmetica Universalisと1707年 · 続きを見る »

1720年

記載なし。

新しい!!: Arithmetica Universalisと1720年 · 続きを見る »

1722年

記載なし。

新しい!!: Arithmetica Universalisと1722年 · 続きを見る »

1769年

記載なし。

新しい!!: Arithmetica Universalisと1769年 · 続きを見る »

1865年

記載なし。

新しい!!: Arithmetica Universalisと1865年 · 続きを見る »

ここにリダイレクトされます:

普遍算術

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »