ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
ダウンロード
ブラウザよりも高速アクセス!
 

4-クレゾールデヒドロゲナーゼ (ヒドロキシル化)

索引 4-クレゾールデヒドロゲナーゼ (ヒドロキシル化)

4-クレゾールデヒドロゲナーゼ (ヒドロキシル化)(4-cresol dehydrogenase (hydroxylating))は、トルエン分解酵素の一つで、次の化学反応を触媒する酸化還元酵素である。 この酵素の基質は4-クレゾール、H2O と受容体で、生成物は4-ヒドロキシベンズアルデヒドと還元型受容体である。補因子としてFADとシトクロムcを用いる。 この酵素は酸化還元酵素に属し、その他の化合物を受容体としてCH基またはCH2基に特異的に作用する。組織名は4-cresol:acceptor oxidoreductase (methyl-hydroxylating)で、別名にp-cresol-(acceptor) oxidoreductase (hydroxylating)、p-cresol methylhydroxylaseがある。.

10 関係: 基質化学反応トルエンフラビンアデニンジヌクレオチドシトクロムc補因子触媒酸化還元酵素4-ヒドロキシベンズアルデヒド

基質

基質 (きしつ)とは.

新しい!!: 4-クレゾールデヒドロゲナーゼ (ヒドロキシル化)と基質 · 続きを見る »

化学反応

化学反応(かがくはんのう、chemical reaction)は、化学変化の事、もしくは化学変化が起こる過程の事をいう。化学変化とは1つ以上の化学物質を別の1つ以上の化学物質へと変化する事で、反応前化学物質を構成する原子同士が結合されたり、逆に結合が切断されたり、あるいは化学物質の分子から電子が放出されたり、逆に電子を取り込んだりする。広義には溶媒が溶質に溶ける変化や原子のある同位体が別の同位体に変わる変化、液体が固体に変わる変化MF2等も化学変化という。 化学変化の前後では、化学物質の分子を構成する原子の結合が変わって別の分子に変化する事はあるが、原子そのものが別の原子番号の原子に変わる事はない(ただし原子間の電子の授受や同位体の変化はある)。この点で原子そのものが別の原子に変化する原子核反応とは大きく異なる。 化学反応では反応前の化学物質を反応物(reactant)、反応後の化学物質を生成物(product)といい、その過程は化学反応式で表記される。例えば反応物である(塩酸)とNaOH(水酸化ナトリウム)が化学反応して生成物であるH2O(水分子)とNaCl(食塩)ができあがる状況を示した化学反応式は と表記される。.

新しい!!: 4-クレゾールデヒドロゲナーゼ (ヒドロキシル化)と化学反応 · 続きを見る »

トルエン

トルエン(toluene)は、分子式 C7H8(示性式:C6H5CH3)、分子量92.14の芳香族炭化水素に属する有機化合物で、ベンゼンの水素原子の1つをメチル基で置換した構造を持つ。無色透明の液体で、水には極めて難溶だが、アルコール類、油類などには極めて可溶なので、溶媒として広く用いられる。 常温で揮発性があり、引火性を有する。消防法による危険物(第4類第1石油類)に指定されており、一定量以上の貯蔵には消防署への届出が必要である。人体に対しては高濃度の存在下では麻酔作用がある他、毒性が強く、日本では毒物及び劇物取締法により劇物に指定されている。管理濃度は、20ppmである。.

新しい!!: 4-クレゾールデヒドロゲナーゼ (ヒドロキシル化)とトルエン · 続きを見る »

フラビンアデニンジヌクレオチド

フラビンアデニンジヌクレオチド(flavin adenine dinucleotide、FAD)は、いくつかの代謝反応に必要な酸化還元反応の補因子である。FADには2種の酸化還元状態が存在し、それらの生化学的役割は2種の間で変化する。FADは還元されることによって2原子の水素を受容し、FADH2となる。 FADH2はエネルギーキャリアであり、還元された補酵素はミトコンドリアでの酸化的リン酸化の基質として使われる。FADH2は酸化されてFADとなり、これは一般的なエネルギーキャリアのATPを2分子作ることが可能である。真核生物の代謝でのFADの一次供給源はクエン酸回路とβ酸化である。クエン酸回路では、FADはコハク酸をフマル酸に酸化するコハク酸デヒドロゲナーゼの補欠分子族である。一方、β酸化ではアシルCoAデヒドロゲナーゼの酵素反応の補酵素として機能する。 FADはリボフラビン(ビタミンB2)から誘導される。いくつかの酸化還元酵素はフラボ酵素またはフラビンタンパク質(フラボプロテイン)と呼ばれ、電子移動において機能する補欠分子族としてFADを要する。 Category:フラビン Category:ヌクレオチド Category:補因子.

新しい!!: 4-クレゾールデヒドロゲナーゼ (ヒドロキシル化)とフラビンアデニンジヌクレオチド · 続きを見る »

シトクロムc

トクロムc(cytochrome c, cyt c)は、ミトコンドリアの内膜に弱く結合しているヘムタンパク質の一種である。タンパク質のシトクロムcファミリーに属する。他のシトクロムと異なり可溶性(100 g/L)で、電子伝達系において不可欠な因子である。電子伝達系では複合体IIIから1電子を受け取り、複合体IVに1電子を引き渡す。酸化型をフェリシトクロムc、還元型をフェロシトクロムcと呼ぶこともある。ヒトではシトクロムcは CYCS 遺伝子にコードされている。.

新しい!!: 4-クレゾールデヒドロゲナーゼ (ヒドロキシル化)とシトクロムc · 続きを見る »

補因子

生化学の分野において、補因子(ほいんし cofactor)は、酵素の触媒活性に必要なタンパク質以外の化学物質である。 補因子は「補助分子、またはイオン」であると考えられ、生化学的な変化を助けている。ただし、水や豊富に存在するイオンなどは補因子とはみなされない。それは、普遍的に存在し制限されることが滅多にないためである。この語句を無機分子に限って用いている資料もある。 補因子は2つのグループに大別できる。1つは補酵素(ほこうそ、coenzyme)で、タンパク質以外の有機分子であり、官能基を酵素間で輸送する。これらの分子は酵素とゆるく結合し、酵素反応の通常の段階では解離される。一方、補欠分子族(ほけつぶんしぞく、prosthetic group)はタンパク質の一部を構成しており、常時結合しているものである。.

新しい!!: 4-クレゾールデヒドロゲナーゼ (ヒドロキシル化)と補因子 · 続きを見る »

触媒

触媒(しょくばい)とは、特定の化学反応の反応速度を速める物質で、自身は反応の前後で変化しないものをいう。また、反応によって消費されても、反応の完了と同時に再生し、変化していないように見えるものも触媒とされる。「触媒」という用語は明治の化学者が英語の catalyser、ドイツ語の Katalysator を翻訳したものである。今日では、触媒は英語では catalyst、触媒の作用を catalysis という。 今日では反応の種類に応じて多くの種類の触媒が開発されている。特に化学工業や有機化学では欠くことができない。また、生物にとっては酵素が重要な触媒としてはたらいている。.

新しい!!: 4-クレゾールデヒドロゲナーゼ (ヒドロキシル化)と触媒 · 続きを見る »

酸化還元酵素

酸化還元酵素(さんかかんげんこうそ、oxidoreductase)とはEC第1群に分類される酵素で、酸化還元反応を触媒する酵素である。オキシドレダクターゼとも呼ばれる。生体内では多数の酸化還元酵素が知られており、約560種類ともいわれる。.

新しい!!: 4-クレゾールデヒドロゲナーゼ (ヒドロキシル化)と酸化還元酵素 · 続きを見る »

水面から跳ね返っていく水滴 海水 水(みず)とは、化学式 HO で表される、水素と酸素の化合物である広辞苑 第五版 p. 2551 【水】。特に湯と対比して用いられ、温度が低く、かつ凝固して氷にはなっていないものをいう。また、液状のもの全般を指すエンジンの「冷却水」など水以外の物質が多く含まれているものも水と呼ばれる場合がある。日本語以外でも、しばしば液体全般を指している。例えば、フランス語ではeau de vie(オー・ドゥ・ヴィ=命の水)がブランデー類を指すなど、eau(水)はしばしば液体全般を指している。そうした用法は、様々な言語でかなり一般的である。。 この項目では、HO の意味での水を中心としながら、幅広い意味の水について解説する。.

新しい!!: 4-クレゾールデヒドロゲナーゼ (ヒドロキシル化)と水 · 続きを見る »

4-ヒドロキシベンズアルデヒド

4-ヒドロキシベンズアルデヒド(4-hydroxybenzaldehyde)は、3種あるヒドロキシベンズアルデヒドの異性体の一つである。ラン科のオニノヤガラや から発見されている。バニラではバニリンの生合成中間体となっている。 デーキン反応によってヒドロキノンと、対応するカルボン酸に変換される。 代謝酵素として、4-ヒドロキシベンズアルデヒドデヒドロゲナーゼがニンジンから発見されている。.

新しい!!: 4-クレゾールデヒドロゲナーゼ (ヒドロキシル化)と4-ヒドロキシベンズアルデヒド · 続きを見る »

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »