ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
ダウンロード
ブラウザよりも高速アクセス!
 

三次元の点群

索引 三次元の点群

幾何学において、三次元の点群は原点を固定させる、またはそれ相当に、球面のであるところの三次元の等長群である。それは原点が固定された等長写像の群、またはそれ相当に、直交行列の群である、直交群O(3)の部分群である。O(3)そのものはすべての等長写像のユークリッドの運動群E(3)の部分群である。 幾何学的対象のは等長群である。それに応じて、等長群の分析は可能な対称性の分析である。有界な三次元の幾何学的対象の全ての等長写像は一つもしくはそれより多い共通の固定点を持つ。それらの一つとして原点を選んで考える。.

11 関係: 対応定理対称性幾何学ユークリッドの運動群スピン群球面等長写像直交群直交行列部分群数学的対象

対応定理

数学の群論における対応定理(たいおうていり、correspondence theorem, Korrespondenzsatz)は正規部分群 N \trianglelefteq G による商群 の部分群がちょうど群 の を含む部分群と対応していることを述べている。対応定理という名前は他の代数的構造に対する類似の関係にも用いられることもある。束定理 (lattice theorem) または第四同型定理ともいう。.

新しい!!: 三次元の点群と対応定理 · 続きを見る »

対称性

対称性(たいしょうせい、ラテン語・ギリシャ語: συμμετρία symmetria, 独:Symmetrie, 英:symmetry)とは、ある変換に関して不変である性質である。 英語を音訳したシンメトリーと呼ぶこともあるが、2つのmは同時に発音されるため、英語の発音は「シメトリー」に近い。.

新しい!!: 三次元の点群と対称性 · 続きを見る »

幾何学

最先端の物理学でも用いられるカラビ-ヤウ多様体の一種。現代幾何学では図も書けないような抽象的な分野も存在する。 幾何学(きかがく、)は、図形や空間の性質について研究する数学の分野である広辞苑第六版「幾何学」より。イエズス会マテオ・リッチによる geometria の中国語訳である。以前は geometria の冒頭の geo- を音訳したものであるという説が広く流布していたが、近年の研究により否定されている。 もともと測量の必要上からエジプトで生まれたものだが、人間に認識できる図形に関する様々な性質を研究する数学の分野としてとくに古代ギリシャにて独自に発達しブリタニカ国際大百科事典2013小項目版「幾何学」より。、これらのおもな成果は紀元前300年ごろユークリッドによってユークリッド原論にまとめられた。その後中世以降のヨーロッパにてユークリッド幾何学を発端とする様々な幾何学が登場することとなる。 幾何学というとユークリッド幾何学のような具体的な平面や空間の図形を扱う幾何学が一般には馴染みが深いであろうが、対象や方法、公理系などが異なる多くの種類の幾何学が存在し、現代においては微分幾何学や代数幾何学、位相幾何学などの高度に抽象的な理論に発達・分化している。 現代の日本の教育では、体系的な初等幾何学はほぼ根絶されかけたが、近年、中・高の数学教育で線型幾何/代数幾何を用いない立体を含む、本格的な綜合幾何は見直されつつある。.

新しい!!: 三次元の点群と幾何学 · 続きを見る »

ユークリッドの運動群

数学におけるユークリッド群(ユークリッド-ぐん、Euclidean group)あるいは運動群 (motion group) は、ユークリッド空間のを言う。その元はユークリッド距離に付随する等距変換であり、合同変換あるいはユークリッドの運動 (motion) と呼ばれる。ユークリッドの運動群の研究は、少なくとも二次元や三次元の場合については極めて古く、群の概念が発するよりもずっと以前から(従ってもちろん群としてでなく、もっと陰伏的な形で)よく調べられている。 -次元ユークリッド空間の運動群は や などとも表される。; 三次元までの等長変換についての概観 は の任意の元が螺旋変位であることを主張する。.

新しい!!: 三次元の点群とユークリッドの運動群 · 続きを見る »

スピン群

数学 において、 スピン群(スピンぐん、spin group) Spin(n) は特殊直交群 SO(n) の二重被覆であり、従って、以下に記すリー群の短完全系列が存在する。 n > 2 に対し、Spin(n) は単連結であり、よって SO(n) の普遍被覆である。 従って、リー群 Spin(n) の次元は n(n − 1)/2 と特殊直交群と同じであり、リー環も特殊直交群のものと同じである。 Spin(n) は、クリフォード多元環 Cℓ(n) の乗法可逆元からなる部分群として構成できる。 n 次元実ユークリッド空間 Rn の標準的正値 2 次形式に対するクリフォード多元環および偶クリフォード多元環を夫々 Cℓ(n)、Cℓ0(n) と書く。 Cℓ(n) の乗法可逆元全体 Cℓ(n)× は乗法群になり、Cℓ0(n) の乗法可逆元全体 Cℓ0(n)× はその部分群になる。 X∈Cℓ(n)× に対して、 は Cℓ(n) の内部自己同型である。 一般クリフォード群 は、Cℓ(n)× の部分群で、特殊クリフォード群 も部分群である。 Cℓ(n) の主逆自己同型を J と書くとき、X∈Γ(n) のノルム は Cℓ(n) の中心の可逆元である。 準同型としてのノルム写像 ν の Γ0(n) への制限の核 Ker(ν|Γ0(n)) は、Spin(n) になる。.

新しい!!: 三次元の点群とスピン群 · 続きを見る »

球面

球面(きゅうめん)とは球体の表面の意である。数学における球面 (sphere) は、距離の定められた空間の定点からの距離が一定であるような点の軌跡として定義される、非常に高い対称性を示す図形である。球面の囲む有界領域を球体あるいは単に球 (ball) と呼ぶ。一般には三次元ユークリッド空間 E3 内のもの、つまり二次元球面を指す場合が多い。.

新しい!!: 三次元の点群と球面 · 続きを見る »

等長写像

数学、とくに幾何学において等長写像(とうちょうしゃぞう)または等距離写像(とうきょりしゃぞう)とは、"長さ" を変えない(距離を保つ、distance preserving)写像のことである。全単射であるものに限って等長写像 (isometry) という場合もある。.

新しい!!: 三次元の点群と等長写像 · 続きを見る »

直交群

数学において、 次元の直交群(ちょっこうぐん、orthogonal group)とは、 次元ユークリッド空間上のある固定された点を保つような距離を保つ変換全体からなる群であり、群の演算は変換の合成によって与える。 と表記する。同値な別の定義をすれば、直交群とは、元が の実直交行列であり、群の積が行列の積によって与えられるものをいう。直交行列とは、逆行列がもとの行列の転置と等しくなるような行列のことである。 直交行列の行列式は か である。 の重要な部分群である特殊直交群 は行列式が である直交行列からなる。この群は回転群ともよばれ、例えば次元 2 や 3 では、群の元が表す変換は(2次元における)点や(3次元における)直線のまわりの通常の回転である。低次元ではこれらの群の性質は幅広く研究されている。 用語「直交群」は上の定義を一般化して、体上のベクトル空間における非退化な対称双線型形式や二次形式基礎体の標数が でなければ、対称双線型形式と二次形式のどちらを使っても同値である。を保つような、可逆な線形作用素全体からなる群を表すことがある。特に、体 上の 次元ベクトル空間 上の双線型形式がドット積で与えられ、二次形式が二乗の和で与えられるとき、これに対応する直交群 は、群の元が 成分 直交行列で群の積を行列の積で定めるものである。これは一般線形群 の部分群であって、以下の形で与えられる。 ここで は の転置であり、 は単位行列である。.

新しい!!: 三次元の点群と直交群 · 続きを見る »

直交行列

交行列(ちょっこうぎょうれつ, )とは、転置行列と逆行列が等しくなる正方行列のこと。つまりn × n の行列 M の転置行列を MT と表すときに、MTM.

新しい!!: 三次元の点群と直交行列 · 続きを見る »

部分群

二項演算 * に関して群 G が与えられたとする。 G の部分集合である H が G の部分群であるということは、 H が演算 * に関して群になるということである。より正確に表現すると、 H が G の部分群であるということは、群の演算 * を H×H (Hの直積)に制限したときに、 H における群の演算になっているということである。この関係は通常、 H ≤ G という記号で表現し、「 H は G の部分群である」と読む。 G の真部分群とは、部分群 H が G の真部分集合である(つまり H≠G である)ことである。任意の群 G に対し、G 自身と単位元のみからなる集合 は常に G の部分群である。 H が G の部分群であるとき、 G は H の拡大群であると表現する場合がある。 G が任意の半群であるときも、G の部分群の定義はそのまま通用するが、本項では群の部分群についてのみを扱うにとどめる。群 G は順序対 (G, &lowast) として記述されることもあるが、このように書くのは普通、G を台となる集合としてその上に演算 "∗" が代数的構造(あるいはもっとほかの構造)を定めるということを強調するためである。 以下では、通常の慣習に倣って ∗ を省略し、積 a ∗ b を単に ab と表記する。また、群の演算を単に「積」と表記する場合もある。.

新しい!!: 三次元の点群と部分群 · 続きを見る »

数学的対象

数学および数学の哲学において、数学的対象(すうがくてきたいしょう、mathematical object)は数学の中から生じてくる抽象的対象である。 一般的に遭遇する数学的対象として、数、順列、分割、行列、集合、関数、および関係などが挙げられる。数学の分科としての幾何学は、六角形、点、線、三角形、円、球、多面体、位相空間、および多様体のような対象を持つ。別の分科の代数学は、群、環、体、格子、および束といった対象を持つ。圏は、数学的対象を一斉に生じさせるものであるとともに、それ自体がひとつの数学的対象である。 数学的対象の存在論的な立場は、数学の哲学で調査および議論される重要な主題である。この議論については、論文を参照のこと。.

新しい!!: 三次元の点群と数学的対象 · 続きを見る »

ここにリダイレクトされます:

3次元における点群3次元の点群三次元における点群

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »