ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
インストール
ブラウザよりも高速アクセス!
 

宇宙マイクロ波背景放射

索引 宇宙マイクロ波背景放射

cmあたりの波数。横軸の5近辺の波長1.9mm、160.2Ghzにピークがあることが読み取れる WMAPによる宇宙マイクロ波背景放射の温度ゆらぎ。 宇宙マイクロ波背景放射(うちゅうマイクロははいけいほうしゃ、cosmic microwave background; CMB)とは、天球上の全方向からほぼ等方的に観測されるマイクロ波である。そのスペクトルは2.725Kの黒体放射に極めてよく一致している。 単に宇宙背景放射 (cosmic background radiation; CBR)、マイクロ波背景放射 (microwave background radiation; MBR) 等とも言う。黒体放射温度から3K背景放射、3K放射とも言う。宇宙マイクロ波背景輻射、宇宙背景輻射などとも言う(輻射は放射の同義語)。.

82 関係: 南極大気圏天球天文学者の一覧定常宇宙論宇宙の年表宇宙のインフレーション宇宙の晴れ上がり宇宙ひも宇宙ニュートリノ背景宇宙論宇宙論パラメータ宇宙赤外線背景放射宇宙X線背景放射小松英一郎干渉法地球ノーベル物理学賞マイクロ波ノイズマサチューセッツ工科大学チリハッブルの法則バリオンラルフ・アルファーロバート・ウッドロウ・ウィルソンボロメータプランク (人工衛星)プリンストン高等研究所ビッグバンダークエネルギーベル研究所アメリカ合衆国アメリカ航空宇宙局アンテナアンデス山脈アーノ・ペンジアスイオンイオン化カリフォルニア大学ケルビンザックス・ヴォルフェ効果ジョージ・ガモフスペクトルスペクトル密度スニヤエフ・ゼルドビッチ効果センチメートル光子BOOMERanGCBI...COBE等方的と異方的熱力学温度銀河黒体放射赤方偏移量子ゆらぎ電子電子レンジ電磁波陽子WMAP暗黒物質恒星欧州宇宙機関水素波長日経サイエンス1940年代1941年1960年代1964年1970年代1978年1989年1996年2000年2001年2003年21cm線 インデックスを展開 (32 もっと) »

南極

南極大陸の位置 南極大陸の衛星写真 南極旗 南極(なんきょく、Antarctic)とは、地球上の南極点、もしくは南極点を中心とする南極大陸およびその周辺の島嶼・海域(南極海)などを含む地域を言う。南極点を中心に南緯66度33分までの地域については南極圏と呼ぶ。南緯50度から60度にかけて不規則な形状を描く氷塊の不連続線である南極収斂線があり、これより南を南極地方とも呼ぶ。南極地方には、南極大陸を中心に南極海を含み、太平洋、インド洋、大西洋の一部も属する。 なお、1961年6月に発効した南極条約により、南緯60度以南の領有権主張は凍結(2012年現在、一部の国が現在も領有権を主張している)されており、軍事利用、核実験なども禁止されている。.

新しい!!: 宇宙マイクロ波背景放射と南極 · 続きを見る »

大気圏

木星の大気圏の外観。大赤斑が確認できる 大気圏(たいきけん、)とは、大気の球状層(圏)。大気(たいき、、)とは、惑星、衛星などの(大質量の)天体を取り囲む気体を言う。大気は天体の重力によって引きつけられ、保持(宇宙空間への拡散が妨げられること)されている。天体の重力が強く、大気の温度が低いほど大気は保持される。.

新しい!!: 宇宙マイクロ波背景放射と大気圏 · 続きを見る »

天球

天球(てんきゅう、celestial sphere)とは、惑星や恒星がその上に張り付き運動すると考えられた、地球を中心として取り巻く球体のこと。また、位置天文学において地球から見える天体の方向を表すために無限遠の距離にある仮想の球面上の点も天球と呼ぶ。.

新しい!!: 宇宙マイクロ波背景放射と天球 · 続きを見る »

天文学者の一覧

天文学者の一覧(てんもんがくしゃのいちらん)は、天文学者の一覧である。なお日本の天文学者は多数にわたるのでノーベル物理学賞受賞者・文化勲章受章者のみ掲載する。ノーベル物理学賞受賞者・文化勲章受章者以外の日本の天文学者については日本の天文学者の一覧を参照。 括弧内は国名、生年。ユリウス暦とグレゴリオ暦ではグレゴリオ暦を優先。.

新しい!!: 宇宙マイクロ波背景放射と天文学者の一覧 · 続きを見る »

定常宇宙論

定常宇宙論(ていじょううちゅうろん、steady state cosmology)とは、1948年にフレッド・ホイル、トーマス・ゴールド、ヘルマン・ボンディらによって提唱された宇宙論のモデルであり、(宇宙は膨張しているが)無からの物質の創生により、任意の空間の質量(大雑把に言えば宇宙空間に分布する銀河の数)は常に一定に保たれ、宇宙の基本的な構造は時間によって変化することはない、とするものである。 2005年現在、ビッグバン理論(ビッグバン仮説)が有力と考えられることが多く、支持する多くの科学者らから「標準的宇宙論モデル」と呼ばれており、このような立場からは定常宇宙論は「非標準的宇宙論 (non-standard cosmology)」の一つと見なされている。.

新しい!!: 宇宙マイクロ波背景放射と定常宇宙論 · 続きを見る »

宇宙の年表

宇宙の年表(うちゅうのねんぴょう)は我々の住む宇宙で起きた出来事の年表であり、ビッグバン理論を中心に他の科学理論も交えてまとめたものである。 宇宙の歴史、宇宙の展開、宇宙の進化などとも表現されるものであるが、他の宇宙では冷却速度や対称性の破れ方の違いなどによって違った過程をとる可能性もあるので注意が必要である。 観測によれば、宇宙はおよそ138億年前に誕生した。それ以来宇宙は3つの段階を経過してきている。未だに解明の進んでいない最初期宇宙は今日地上にある加速器で生じさせられるよりも高エネルギーの素粒子からなる高温の状態であり、またほんの一瞬であったとされている。そのためこの段階の基礎的特徴はインフレーション理論などにおいて分析されているが、大部分は推測からなりたっている。 次の段階は初期宇宙と呼ばれ、高エネルギー物理学により解明されてきている。これによれば、はじめに陽子、電子、中性子そして原子核、原子が生成された。中性水素の生成にともない、宇宙マイクロ波背景が放射された。 そのような段階を経て、最初の恒星とクエーサー、銀河、銀河団、超銀河団は形成された。 宇宙の終焉については、さまざまな理論がある。.

新しい!!: 宇宙マイクロ波背景放射と宇宙の年表 · 続きを見る »

宇宙のインフレーション

宇宙のインフレーション(うちゅうのインフレーション、)とは、初期の宇宙が指数関数的な急膨張(インフレーション)を引き起こしたという、初期宇宙の進化モデルである。ビッグバン理論のいくつかの問題を一挙に解決するとされる。インフレーション理論・インフレーション宇宙論などとも呼ばれる。この理論は、1981年に佐藤勝彦K.

新しい!!: 宇宙マイクロ波背景放射と宇宙のインフレーション · 続きを見る »

宇宙の晴れ上がり

宇宙の晴れ上がり(うちゅうのはれあがり、Transparent to radiation)は、ビッグバン理論において宇宙の始まり以来、初めて光子が長距離を進めるようになった時期を指す。これはビッグバンから約38万年後であるとされ、それ以前を「宇宙の暗黒時代」などと対比で呼ぶことがある。英語では電離の対義語となる再結合を意味する "" であり、。 ビッグバンからおよそ38万年後に宇宙の温度は約 まで低下し、電子と原子核が結合して原子を生成するようになると、光子は電子との相互作用をまぬがれ長距離を進めるようになった。これを宇宙が放射に対して透明になった、あるいは宇宙が晴れ上がった、と表現する。同様に、宇宙の晴れ上がり以前の状態は、宇宙が放射に対して不透明である、あるいは宇宙が霧がかっている と、表現する。 この晴れ上がりの時期のマイクロ波は最後の散乱面 あるいは宇宙マイクロ波背景放射と呼ばれ、ビッグバン理論について現在得られる最も良い証拠であると考えられている。.

新しい!!: 宇宙マイクロ波背景放射と宇宙の晴れ上がり · 続きを見る »

宇宙ひも

宇宙ひも(うちゅうひも、cosmic string)は物理学、特に宇宙論で言及される時空の中の特殊な領域。コズミックストリングとも呼ばれる。 時空が相転移する際、全体がいっせいに相転移するのではなく、複数の領域がそれぞれ個別に相転移することが考えられる。その場合、領域の境界には位相的欠陥ができ、その部分は通常の時空とは異なる状態になる。これは、通常の物質が結晶になる際に、結晶粒子の境界に格子欠陥の一種である結晶粒界ができる現象と類似したものと考えると理解しやすい。 宇宙では、宇宙誕生時には1つだった基本相互作用が4つに分かれ、その間に少なくとも3回の相転移があったと考えられている。そして、実際の宇宙では、因果関係が成り立つ範囲、つまり、光速で情報が伝達される範囲内でしか一様な相転移は起きない。つまり、距離の離れた領域は別々に相転移が起き、そのため、宇宙には上述の位相欠陥が残されている可能性がある。 位相的欠陥には、宇宙ひも以外に、ドメインウォール、モノポール、テクスチャーなどがある。 宇宙ひもは線状(ループ状も含む)の欠陥で、時空に角度欠損ができ、その周囲を一周する角度は360度未満となっている。また、宇宙ひもは非常に大きな質量を持っている。そのため、初期の宇宙で密度ゆらぎを起こし、宇宙の大規模構造の原因となった可能性が指摘されたり、ダークマターの候補と考えられたりした。 ループ状の宇宙ひもは、重力波のかたちでエネルギーを放出しながら崩壊していく。この重力波エネルギーが宇宙の進化に与える影響などから、宇宙ひもの存在量が見積もれないかなどが研究されてきた。しかし、WMAPによる宇宙背景放射の温度ゆらぎの解析結果から、宇宙ひもの寄与は(あったとしても)少ないことが分かった。宇宙ひもが存在したとしても宇宙論に与える影響は少ないようである。.

新しい!!: 宇宙マイクロ波背景放射と宇宙ひも · 続きを見る »

宇宙ニュートリノ背景

宇宙ニュートリノ背景(うちゅうニュートリノはいけい)または宇宙背景ニュートリノ(うちゅうはいけいニュートリノ、Cosmic neutrino background、CNB、CνB)は、ニュートリノから構成される宇宙の背景粒子放射である。 宇宙マイクロ波背景放射(CMB)と同様に、CνBはビッグバンの残骸である。CMBは、宇宙の年齢が37万9000歳の頃に由来するが、CνBを生成したニュートリノデカップリングは、宇宙ができて2秒後から始まった。今日、CνBの温度は、約1.95 Kと推定されている。低いエネルギーのニュートリノは、物質と非常に弱い相互作用しかしないために検出が難しく、CνBは未だ直接検出されていない。しかしその存在については間接的な証拠が得られている。.

新しい!!: 宇宙マイクロ波背景放射と宇宙ニュートリノ背景 · 続きを見る »

宇宙論

宇宙論(うちゅうろん、cosmology)とは、「宇宙」や「世界」などと呼ばれる人間をとりかこむ何らかの広がり全体、広義には、それの中における人間の位置、に関する言及、論、研究などのことである。 宇宙論には神話、宗教、哲学、神学、科学(天文学、天体物理学)などが関係している。 「Cosmology コスモロジー」という言葉が初めて使われたのはクリスティアン・ヴォルフの 『Cosmologia Generalis』(1731)においてであるとされている。 本項では、神話、宗教、哲学、神学などで扱われた宇宙論も幅広く含めて扱う。.

新しい!!: 宇宙マイクロ波背景放射と宇宙論 · 続きを見る »

宇宙論パラメータ

宇宙論パラメータ(うちゅうろんパラメータ、Cosmological Parameter)とは、観測できる宇宙の組成から推定される値であり、初期宇宙において形成された物理指標値のことである。.

新しい!!: 宇宙マイクロ波背景放射と宇宙論パラメータ · 続きを見る »

宇宙赤外線背景放射

宇宙赤外線背景放射(cosmic infrared background; CIRB)は銀河系の両極方向で見られる、数十億光年以上の彼方に起源があると思われる赤外線の背景放射である。 放射源はビッグバン直後に生まれた第一世代の恒星によって加熱された星間物質から放射される近赤外線ではないかと考えられている。しかし現在の理論的予測に比べて強度が強いため、その原因について、星間ガスが予測以上に多いためか、宇宙初期に第一世代の星が爆発的に誕生し、多量のエネルギーを放射した後で超新星爆発を起こして消滅してしまったせいか、などの可能性が議論されている。 Category:観測天文学 Category:赤外線天文学.

新しい!!: 宇宙マイクロ波背景放射と宇宙赤外線背景放射 · 続きを見る »

宇宙X線背景放射

宇宙X線背景放射 (cosmic X-ray background; CXB)は1962年のロケット実験で存在が確認された、宇宙から等方的にやってくるX線放射である。 その起源については、クエーサーや活動銀河核にあるとされる大型ブラックホールなどの点源の集まりからなるのか、広がった高温ガスの熱制動放射由来なのか議論が続いていた。当初、全体の25~30%の成分は点源としてほぼ確認されていたが、放射全ての起源を確認するには至っていなかった。しかし、高い角分解能を持つチャンドラX線衛星の観測によって、宇宙X線背景放射の85%以上が点源からの放射の寄せ集めであることが判明した。 Category:X線天文学.

新しい!!: 宇宙マイクロ波背景放射と宇宙X線背景放射 · 続きを見る »

小松英一郎

小松 英一郎(こまつ えいいちろう、1974年 - )は、日本の物理学者。テキサス大学教授。専門は、観測的宇宙論。博士(理学)(東北大学、2001年)。.

新しい!!: 宇宙マイクロ波背景放射と小松英一郎 · 続きを見る »

干渉法

2波干渉 単色光源による波面を距離を変えてぶつけてやると、こうなる。 干渉法(かんしょうほう)は複数の波を重ね合わせるとき、それぞれの波の位相が一致した部分では波が強め合い、位相が逆転している部分では弱めあうことを利用して、波長(周波数)や位相差を測定する技術のこと。この原理を利用した機器を主に干渉計とよぶ。 ガンマ線から可視光線、電波・音波領域に及ぶ電磁波工学の研究・製品の製造管理(および較正)・動作原理においては基礎的技術であり、この原理を利用する機器・分野は極めて多岐に渡る。.

新しい!!: 宇宙マイクロ波背景放射と干渉法 · 続きを見る »

地球

地球(ちきゅう、Terra、Earth)とは、人類など多くの生命体が生存する天体である広辞苑 第五版 p. 1706.。太陽系にある惑星の1つ。太陽から3番目に近く、表面に水、空気中に酸素を大量に蓄え、多様な生物が生存することを特徴とする惑星である。.

新しい!!: 宇宙マイクロ波背景放射と地球 · 続きを見る »

ノーベル物理学賞

ノーベル物理学賞(ノーベルぶつりがくしょう、Nobelpriset i fysik)は、ノーベル賞の一部門。アルフレッド・ノーベルの遺言によって創設された6部門のうちの一つ。物理学の分野において重要な発見を行った人物に授与される。 ノーベル物理学賞のメダルは、表面にはアルフレッド・ノーベルの横顔(各賞共通)、裏面には宝箱を持ち雲の中から現れた自然の女神のベールを科学の神が持ち上げて素顔を眺めている姿(化学賞と共通)がデザインされている。.

新しい!!: 宇宙マイクロ波背景放射とノーベル物理学賞 · 続きを見る »

マイクロ波

マイクロ波(マイクロは、Microwave)は、電波の周波数による分類の一つである。「マイクロ」は、電波の中で最も短い波長域であることを意味する。.

新しい!!: 宇宙マイクロ波背景放射とマイクロ波 · 続きを見る »

ノイズ

ノイズ (noise) とは、処理対象となる情報以外の不要な情報のことである。歴史的理由から雑音(ざつおん)に代表されるため、しばしば工学分野の文章などでは(あるいは日常的な慣用表現としても)音以外に関しても「雑音」と訳したり表現したりして、音以外の信号等におけるノイズの意味で扱っていることがある。西洋音楽では噪音(そうおん)と訳し、「騒音」や「雑音」と区別している。.

新しい!!: 宇宙マイクロ波背景放射とノイズ · 続きを見る »

マサチューセッツ工科大学

マサチューセッツ工科大学(英語: Massachusetts Institute of Technology)は、アメリカ合衆国マサチューセッツ州ケンブリッジに本部を置く私立工科大学である。1865年に設置された。通称はMIT(エム・アイ・ティー。「ミット」は誤用で主に日本、欧州の極めて一部で用いられる)。 全米屈指のエリート名門校の1つとされ、ノーベル賞受賞者を多数(2014年までの間に1年以上在籍しMITが公式発表したノーベル賞受賞者は81名で、この数はハーバード大学の公式発表受賞者48名を上回る)輩出している。最も古く権威ある世界大学評価機関の英国Quacquarelli Symonds(QS)による世界大学ランキングでは、2012年以来2017年まで、ハーバード大学及びケンブリッジ大学を抑えて6年連続で世界第一位である。 同じくケンブリッジ市にあるハーバード大学とはライバル校であるが、学生達がそれぞれの学校の授業を卒業単位に組み込める単位互換制度(Cross-registration system)が確立されている。このため、ケンブリッジ市は「世界最高の学びのテーマパーク」とさえも称されている。物理学や生物学などの共同研究組織を立ち上げるなど、ハーバード大学との共同研究も盛んである。 MITはランドグラント大学でもある。1865年から1900年の間に約19万4千ドル(これは2008年時点の生活水準でいうところの380万ドルに相当)のグラントを得、また同時期にマサチューセッツ州から更なる約36万ドル(2008年時点の生活水準で換算して700万ドルに相当)の資金を獲得しているD.

新しい!!: 宇宙マイクロ波背景放射とマサチューセッツ工科大学 · 続きを見る »

チリ

チリ共和国(チリきょうわこく、República de Chile)、通称チリは、南アメリカ南部に位置する共和制国家である。東にアルゼンチン、北東にボリビア、北にペルーと隣接しており、西と南は太平洋に面している。首都はサンティアゴ・デ・チレ。 1818年にスペインより独立した。アルゼンチンと共に南アメリカ最南端に位置し、国土の大部分がコーノ・スールの域内に収まる。太平洋上に浮かぶフアン・フェルナンデス諸島や、サン・フェリクス島、サン・アンブロシオ島及びポリネシアのサラ・イ・ゴメス島、パスクア島(イースター島)などの離島も領有しており、さらにアルゼンチンやイギリスと同様に「チリ領南極」として125万平方キロメートルにも及ぶ南極の領有権を主張している。.

新しい!!: 宇宙マイクロ波背景放射とチリ · 続きを見る »

ハッブルの法則

ハッブルの法則(ハッブルのほうそく)とは、天体が我々から遠ざかる速さとその距離が正比例することを表す法則である。1929年、エドウィン・ハッブルとミルトン・ヒューメイソンによって発表された。この発見は、宇宙は膨張しているものであるとする説を強力に支持するものとなった。 v を天体が我々から遠ざかる速さ(後退速度)、D を我々からその天体までの距離とすると、 となる。ここで比例定数 H_0 はハッブル定数 (Hubble constant) と呼ばれ、現在の宇宙の膨張速度を決める。 ハッブル定数は時間の逆数の次元 T をもち、通常はキロメートル毎秒毎メガパーセク(記号: km/s/Mpc)が単位として用いられる。2014年現在最も正確な値は、プランクの観測による である。換言すれば、銀河は実視等級20等程度までスペクトル観測が可能であるが、いずれの銀河もそのスペクトルは赤のほうにずれている、これを赤方偏移という。これがドップラー効果とすれば銀河までの距離と後退速度の間に一定の法則性を発見したものといえる。 1927年にジョルジュ・ルメートルもハッブルと同等の法則を提唱していたが、フランス語のマイナーな雑誌に掲載されたためそのときは注目されなかった。ルメートルはスライファーとハッブルの観測データを用いている。.

新しい!!: 宇宙マイクロ波背景放射とハッブルの法則 · 続きを見る »

バリオン

バリオン(baryon)とは、3つのクォークから構成される亜原子粒子である。素粒子物理学の標準模型では、ハドロンの一種である。重粒子(じゅうりゅうし)とも言う。.

新しい!!: 宇宙マイクロ波背景放射とバリオン · 続きを見る »

ラルフ・アルファー

ラルフ・アルファー(Ralph Asher Alpher、1921年2月3日 - 2007年8月12日)はアメリカ合衆国の物理学者。ユニオン大学名誉教授。宇宙の誕生とその後の急速な膨張のなかで、ヘリウムなどが合成されるメカニズムに関する論文いわゆる「αβγ理論」で知られる。.

新しい!!: 宇宙マイクロ波背景放射とラルフ・アルファー · 続きを見る »

ロバート・ウッドロウ・ウィルソン

ロバート・ウッドロウ・ウィルソン(Robert Woodrow Wilson, 1936年1月10日 - )は、アメリカの天文学者、物理学者。アーノ・ペンジアスとともに宇宙マイクロ波背景放射(CMB)を発見し、ノーベル物理学賞を受賞した。テキサス州ヒューストン生まれ。 1964年に宇宙マイクロ波背景放射を偶然発見した業績によって、1978年にウィルソンはペンジアスとともにノーベル物理学賞を受賞した(この年の物理学賞はピョートル・カピッツァとの共同受賞である)。ニュージャージー州ホルムデルのベル研究所にあった新型アンテナを使った研究中に、彼らは空に説明できない電波ノイズ源があることを発見した。このアンテナに付いていた鳩の糞を取り除き、その他考えられる全ての雑音源を特定した後、最終的にこのノイズがCMBであることを突き止めた。この発見はビッグバン理論の重要な確証とされた。 ウィルソンはライス大学で学部時代を過ごし、優等学生の友愛会であるファイ・ベータ・カッパに入っていた。卒業後はカリフォルニア工科大学で学位を取得した。 Category:アメリカ合衆国の天文学者 Category:アメリカ合衆国の物理学者 Category:ノーベル物理学賞受賞者 Category:ベル研究所の人物 Category:テキサス州ハリス郡出身の人物 Category:1936年生 Category:存命人物.

新しい!!: 宇宙マイクロ波背景放射とロバート・ウッドロウ・ウィルソン · 続きを見る »

ボロメータ

NASA/JPL-Caltech。 ボロメータ (bolometer、、測るもの、放射物の から)は入射する電磁波などの放射のエネルギーを、温度に依存する電気抵抗を持つ物質の受ける熱を通して計測する観測機器である。1878年にアメリカ人天文学者サミュエル・ラングレーにより発明された。名前は、光線のことを放り投げられたものを意味する により表現している。 熱力学における熱量計として使用する事が本来の使用法である。低温物理学に於いて代替し得る物は無い。 20世紀初頭には既に現在の形態になったが、近年、MEMS技術を取り入れる事で赤外線撮像素子等、応用範囲が広がりつつある。.

新しい!!: 宇宙マイクロ波背景放射とボロメータ · 続きを見る »

プランク (人工衛星)

プランク (Planck) は、宇宙背景放射を観測するための高感度・高分解能の観測装置を備えた宇宙望遠鏡である。ESAで2000年に3番目の中規模計画として計画された。当初はCOBRAS/SAMBAと呼ばれていたが、後にノーベル物理学賞を受賞したドイツのマックス・プランクにちなんで改名された。 NASAのWMAP探査機が広視野・低感度であるのに対し、プランクは対照的である。相補的な成果や宇宙創生期の解明が期待される。 プランクは、2009年5月14日にアリアン5でハーシェル宇宙望遠鏡と共に打ちあげられ、7月にはL2点に投入された。2010年2月には2回目の全天サーベイを開始した。 2013年3月21日に、全天の宇宙背景放射マップが公開された。NASAのWMAPが観測したデータよりも高精度な宇宙背景放射マップが完成し、宇宙の年齢もこれまでよりやや古い約138億年であることが確認された。 2012年1月14日、2つの観測装置のうちの高周波数装置 (HFI) が冷却用の液体ヘリウム枯渇のため観測を終了した。以降は低周波数装置 (LFI) のみで観測を続けていた 。LFIによる観測も2013年10月3日に終了し、10月9日にはスラスタを噴射してL2点からの移動を開始し、10月23日に送信機を停止して運用を終えた。プランクは、運用終了までにHFIとLFIの双方を使っての全天サーベイを5回実施した 。.

新しい!!: 宇宙マイクロ波背景放射とプランク (人工衛星) · 続きを見る »

プリンストン高等研究所

プリンストン高等研究所(プリンストンこうとうけんきゅうじょ、Institute for Advanced Study)は、アメリカ合衆国ニュージャージー州プリンストン市にある研究所。自然科学、数学、社会科学、歴史学の四部門を持ち、世界でももっとも優れた学術研究機関の一つとされる。 中核となるのは27名の教授陣。いずれも最高レベルの研究者であるが、特に物理学と数学の研究が有名である。なお「教授」とはいうものの、原則として授業負担はなく、各自の研究を進めることに加え、毎年世界各地から招聘される約190名の研究者を選抜することが主な職務である。 正式名称は「高等研究所」(Institute for Advanced Study)だが、類似の名称の研究所は内外に数多くあるため、日本では「プリンストン高等研究所」と呼ばれることが多い。プリンストン大学とは直接の関係はないが、同大学など近隣の大学とは密接な協力関係にあり、特にプリンストン大学は高等研究所の草創期に、研究者に対しオフィスを提供するなどしていた。.

新しい!!: 宇宙マイクロ波背景放射とプリンストン高等研究所 · 続きを見る »

ビッグバン

ビッグバン理論では、宇宙は極端な高温高密度の状態で生まれた、とし(下)、その後に空間自体が時間の経過とともに膨張し、銀河はそれに乗って互いに離れていった、としている(中、上)。 ビッグバン(Big Bang)とは、宇宙の開闢直後、時空が指数関数的に急膨張したインフレーションの終了後に相転移により生まれた超高温高密度のエネルギーの塊のことである。また、宇宙は非常に高温高密度の状態から始まり、それが大きく膨張することによって低温低密度になっていったとする膨張宇宙論のことをビッグバン理論 (Big bang theory) という。 「ビッグバン」という語は、狭義では宇宙の(ハッブルの法則に従う)膨張が始まった時点を指す。その時刻は今から138.2億年(13.82 × 109年)前と計算されている。より広義では、宇宙の起源や宇宙の膨張を説明する、現代的な宇宙論的パラダイムをも指す言葉である。 ビッグバン理論(ビッグバン仮説)では「宇宙は「無」の状態から誕生した」とされるが、この「無」やなぜ「無」から宇宙が生まれたのかなどの問題は未だ謎のままである。 遠方の銀河がハッブルの法則に従って遠ざかっているという観測事実を一般相対性理論を適用して解釈すれば、宇宙が膨張しているという結論が得られる。宇宙膨張を過去へと外挿すれば、宇宙の初期には全ての物質とエネルギーが一カ所に集まる高温度・高密度状態にあったことになる。この初期状態、またはこの状態からの爆発的膨張をビッグバンという。この高温・高密度の状態よりさらに以前については、一般相対性理論によれば重力的特異点になるが、物理学者たちの間でこの時点の宇宙に何が起きたかについては広く合意されているモデルはない。 20世紀前半までは、天文学者の間でも「宇宙は不変で定常的」という考え方が支配的だった。1948年にジョージ・ガモフは高温高密度の宇宙がかつて存在していたことの痕跡として宇宙マイクロ波背景放射 (CMB) が存在することを主張、その温度を5Kと推定した。このCMB が1964年になって発見されたことにより、対立仮説(対立理論)であった定常宇宙論の説得力が急速に衰えた。その後もビッグバン理論を高い精度で支持する観測結果が得られるようになり、膨張宇宙論が多数派を占めるようになった。.

新しい!!: 宇宙マイクロ波背景放射とビッグバン · 続きを見る »

ダークエネルギー

ダークエネルギー(ダークエナジー、暗黒エネルギー、dark energy)とは、現代宇宙論および天文学において、宇宙全体に浸透し、宇宙の拡張を加速していると考えられる仮説上のエネルギーである。2013年までに発表されたプランクの観測結果からは、宇宙の質量とエネルギーに占める割合は、原子等の通常の物質が4.9%、暗黒物質(ダークマター)が26.8%、ダークエネルギーが68.3%と算定されている。.

新しい!!: 宇宙マイクロ波背景放射とダークエネルギー · 続きを見る »

ベル研究所

ベル研究所(ベルけんきゅうじょ、Bell Laboratories)はもともとBell System社の研究開発部門として設立された研究所であり、現在はノキアの子会社である。「ベル電話研究所」、略して「ベル研」とも。.

新しい!!: 宇宙マイクロ波背景放射とベル研究所 · 続きを見る »

アメリカ合衆国

アメリカ合衆国(アメリカがっしゅうこく、)、通称アメリカ、米国(べいこく)は、50の州および連邦区から成る連邦共和国である。アメリカ本土の48州およびワシントンD.C.は、カナダとメキシコの間の北アメリカ中央に位置する。アラスカ州は北アメリカ北西部の角に位置し、東ではカナダと、西ではベーリング海峡をはさんでロシアと国境を接している。ハワイ州は中部太平洋における島嶼群である。同国は、太平洋およびカリブに5つの有人の海外領土および9つの無人の海外領土を有する。985万平方キロメートル (km2) の総面積は世界第3位または第4位、3億1千7百万人の人口は世界第3位である。同国は世界で最も民族的に多様かつ多文化な国の1つであり、これは多くの国からの大規模な移住の産物とされているAdams, J.Q.;Strother-Adams, Pearlie (2001).

新しい!!: 宇宙マイクロ波背景放射とアメリカ合衆国 · 続きを見る »

アメリカ航空宇宙局

アメリカ航空宇宙局(アメリカこうくううちゅうきょく、National Aeronautics and Space Administration, NASA)は、アメリカ合衆国政府内における宇宙開発に関わる計画を担当する連邦機関である。1958年7月29日、国家航空宇宙法 (National Aeronautics and Space Act) に基づき、先行の国家航空宇宙諮問委員会 (National Advisory Committee for Aeronautics, NACA) を発展的に解消する形で設立された。正式に活動を始めたのは同年10月1日のことであった。 NASAはアメリカの宇宙開発における国家的努力をそれ以前よりもさらに充実させ、アポロ計画における人類初の月面着陸、スカイラブ計画における長期宇宙滞在、さらに宇宙往還機スペースシャトルなどを実現させた。現在は国際宇宙ステーション (International Space Station, ISS) の運用支援、オリオン宇宙船、スペース・ローンチ・システム、商業乗員輸送などの開発と監督を行なっている。 宇宙開発に加えてNASAが帯びている重要な任務は、宇宙空間の平和目的あるいは軍事目的における長期間の探査である。人工衛星を使用した地球自体への探査、無人探査機を使用した太陽系の探査、進行中の冥王星探査機ニュー・ホライズンズ (New Horizons) のような太陽系外縁部の探査、さらにはハッブル宇宙望遠鏡などを使用した、ビッグ・バンを初めとする宇宙全体への探査などが主な役割となっている。2006年2月に発表されたNASAの到達目標は、「宇宙空間の開拓、科学的発見、そして最新鋭機の開発において、常に先駆者たれ」であった。.

新しい!!: 宇宙マイクロ波背景放射とアメリカ航空宇宙局 · 続きを見る »

アンテナ

アンテナ(antenna)とは、高周波エネルギーを電波(電磁波)として空間に放射(送信)したり、逆に空間の電波(電磁波)を高周波エネルギーへ相互に変換(受信)する装置のことで、日本語だと空中線と呼ばれ、英語における本来の意味だと昆虫の触角を意味している。  アンテナは、その用途から送信用と受信用に分けられるが、可逆性を備えている物なら送受信の兼用が可能である。.

新しい!!: 宇宙マイクロ波背景放射とアンテナ · 続きを見る »

アンデス山脈

アンデス山脈(アンデスさんみゃく、Cordillera de los Andes)は、主に南アメリカ大陸の西側に沿って、北緯10度から南緯50度まで南北7500km、幅750kmにわたる世界最長の連続した褶曲(しゅうきょく)山脈である。山脈はベネズエラ、コロンビア、エクアドル、ペルー、ボリビア、アルゼンチン、チリの7カ国にまたがる。 最高峰はアコンカグア(6960m・一説には7021m)で、6000mを越える高峰が20座以上そびえ立っている。山脈が現在の姿になり始めたのは白亜紀で、その後現在まで太平洋プレート、ナスカプレートと南米大陸のぶつかり合いで隆起し、場所により異なる構造運動を受けて大きくなったと考えられている。.

新しい!!: 宇宙マイクロ波背景放射とアンデス山脈 · 続きを見る »

アーノ・ペンジアス

アーノ・アラン・ペンジアス(Arno Allan Penzias, 1933年4月26日 - )はアメリカ合衆国の物理学者。宇宙マイクロ波背景放射の発見によって1978年のノーベル物理学賞を受賞した。.

新しい!!: 宇宙マイクロ波背景放射とアーノ・ペンジアス · 続きを見る »

イオン

イオン(Ion、ion)とは、電子の過剰あるいは欠損により電荷を帯びた原子または原子団のことである。電離層などのプラズマ、電解質の水溶液、イオン結晶などのイオン結合性を持つ物質内などに存在する。 陰極や陽極に引かれて動くことから、ギリシャ語のἰόνイオン, ローマ字表記でion("going")より、 ion(移動)の名が付けられた。.

新しい!!: 宇宙マイクロ波背景放射とイオン · 続きを見る »

イオン化

イオン化(イオンか、ionization)とは、電荷的に中性な分子を、正または負の電荷を持ったイオンとする操作または現象で、電離(でんり)とも呼ばれる。 主に物理学の分野では荷電ともいい、分子(原子あるいは原子団)が、エネルギー(電磁波や熱)を受けて電子を放出したり、逆に外から得ることを指す。(プラズマまたは電離層を参照) また、化学の分野では解離ともいい、電解質(塩)が溶液中や融解時に、陽イオンと陰イオンに分かれることを指す。.

新しい!!: 宇宙マイクロ波背景放射とイオン化 · 続きを見る »

カリフォルニア大学

10大学からなるカリフォルニア大学システム(UC system)はアメリカ合衆国で最大規模の州立大学群であり、カリフォルニア大学バークレー校を旗艦校としている。モットーはラテン語で「fiat lux」(「光あれ」の意味)。各キャンパスはそれぞれ独立に運営される別の大学であるため、カリフォルニア大学という大学が単体で存在する訳ではない。 在学者19万1000人以上と存命同窓生134万0000人以上を資金母体とした約49億ドルの運用可能な基金を有している(アメリカ国内で7番目の規模)。.

新しい!!: 宇宙マイクロ波背景放射とカリフォルニア大学 · 続きを見る »

ケルビン

ルビン(kelvin, 記号: K)は、熱力学温度(絶対温度)の単位である。国際単位系 (SI) において基本単位の一つとして位置づけられている。 ケルビンの名は、イギリスの物理学者で、絶対温度目盛りの必要性を説いたケルビン卿ウィリアム・トムソンにちなんで付けられた。なお、ケルビン卿の通称は彼が研究生活を送ったグラスゴーにあるから取られている。.

新しい!!: 宇宙マイクロ波背景放射とケルビン · 続きを見る »

ザックス・ヴォルフェ効果

ックス・ヴォルフェ効果 (ザックス・ヴォルフェこうか、英: Sachs-Wolfe effect)は、宇宙マイクロ波背景放射 (cosmic microwave background radiation; CMB) の光子が重力赤方偏移を受けることにより、観測者から見た CMB のスペクトルにむらが現れるという現象である。この効果は、角度スケールで10°を超えるCMBのゆらぎについて、それを引き起こす支配的な原因である。この通称は、1967年に提唱した2人のアメリカ人宇宙物理学者 Rainer Kurt Sachs と Arthur Michael Wolfe にちなんで命名された。.

新しい!!: 宇宙マイクロ波背景放射とザックス・ヴォルフェ効果 · 続きを見る »

ジョージ・ガモフ

ョージ・ガモフ(George Gamow, Джордж Гамов, Георгий Антонович Гамов, ゲオルギー・アントノヴィッチ・ガモフ, 1904年3月4日 - 1968年8月19日)は、ロシア帝国領オデッサ(現在はウクライナ領)生まれのアメリカの理論物理学者。アレクサンドル・フリードマンの弟子。.

新しい!!: 宇宙マイクロ波背景放射とジョージ・ガモフ · 続きを見る »

スペクトル

ペクトル()とは、複雑な情報や信号をその成分に分解し、成分ごとの大小に従って配列したもののことである。2次元以上で図示されることが多く、その図自体のことをスペクトルと呼ぶこともある。 様々な領域で用いられる用語で、様々な意味を持つ。現代的な意味のスペクトルは、分光スペクトルか、それから派生した意味のものが多い。.

新しい!!: 宇宙マイクロ波背景放射とスペクトル · 続きを見る »

スペクトル密度

ペクトル密度(スペクトルみつど、Spectral density)は、定常過程に関する周波数値の正実数の関数または時間に関する決定的な関数である。パワースペクトル密度(電力スペクトル密度、Power spectral density)、エネルギースペクトル密度(Energy spectral density)とも。単に信号のスペクトルと言ったとき、スペクトル密度を指すこともある。直観的には、スペクトル密度は確率過程の周波数要素を捉えるもので、周期性を識別するのを助ける。.

新しい!!: 宇宙マイクロ波背景放射とスペクトル密度 · 続きを見る »

スニヤエフ・ゼルドビッチ効果

ニヤエフ・ゼルドビッチ効果(スニヤエフ・ゼルドビッチこうか、Sunyaev-Zel'dovich effect、SZ効果 あるいは SZE)またはスニャーエフ・ゼルドビッチ効果は、宇宙マイクロ波背景放射 (Cosmic Microwave Background radiation; CMB) の光子が銀河団を通過するときに、高エネルギーの電子(典型的には電子温度で数keV) によって散乱され、CMBのスペクトルがやや高エネルギー側にずれる現象。観測されたCMBスペクトルのずれは、宇宙の密度摂動を検出するのに利用されている。この効果を用いることにより、いくつかの密度の高い銀河団が観測されている。.

新しい!!: 宇宙マイクロ波背景放射とスニヤエフ・ゼルドビッチ効果 · 続きを見る »

センチメートル

ンチメートル(記号cm)は、国際単位系(SI)の長さの単位で、メートル(m)に相当する。基本単位のメートルとを表す接頭辞センチを組み合わせた単位である。.

新しい!!: 宇宙マイクロ波背景放射とセンチメートル · 続きを見る »

光子

|mean_lifetime.

新しい!!: 宇宙マイクロ波背景放射と光子 · 続きを見る »

BOOMERanG

測定機器の打ち上げ準備 BOOMERanG実験(Balloon Observations Of Millimetric Extragalactic Radiation and Geophysics)は宇宙背景放射を気球により観測した実験のことである。 BOOMERanGにより測定された宇宙背景放射線の異方性.

新しい!!: 宇宙マイクロ波背景放射とBOOMERanG · 続きを見る »

CBI

CBI.

新しい!!: 宇宙マイクロ波背景放射とCBI · 続きを見る »

COBE

宇宙背景放射探査機(うちゅうはいけいほうしゃたんさき、Cosmic Background Explorer, COBE、コービー)は、宇宙論的観測を目的として初めて打ち上げられた人工衛星である。Explorer 66 という別名も持つ。COBE の目標は宇宙マイクロ波背景放射 (CMB) を観測し、我々の宇宙の形状を理解する助けとなるような測定データを得ることであった。.

新しい!!: 宇宙マイクロ波背景放射とCOBE · 続きを見る »

等方的と異方的

ある対象の性質や分布が方向に依存しないときそれは等方的(英語:isotropic)であるという。また、方向に依存するとき異方的(anisotropic)であるという。別な表現では、ある対象の性質や分布が回転により変化しないとき等方的であり、回転により変化するとき異方的である。対象が等方的か異方的かは、対象の等方性(isotropy)もしくは異方性(anisotropy)の有無として表現する場合もある。 空間(真空)は、本質的には、回転に関して物理法則が不変であるので等方的である。また、そこに何らかの物体があるとその場は異方的になる場合がある。.

新しい!!: 宇宙マイクロ波背景放射と等方的と異方的 · 続きを見る »

熱力学温度

熱力学温度(ねつりきがくおんど、)熱力学的温度(ねつりきがくてきおんど)とも呼ばれる。は、熱力学に基づいて定義される温度である。 国際量体系 (ISQ) における基本量の一つとして位置付けられ、次元の記号としてサンセリフローマン体の が用いられる。また、国際単位系 (SI) における単位はケルビン(記号: K)が用いられる。熱力学や統計力学に関する文献やそれらの応用に関する文献では、熱力学温度の意味で温度 という言葉を使うことが多い。 熱力学温度は平衡熱力学における基本的要請を満たすように定義される示強変数であり、そのような温度は一つに限らない。 熱力学温度が持つ基本的な性質の一つとして普遍性がある。具体的な物質の熱膨張などを基準として定められる温度は、選んだ物質に固有の性質をその定義に含んでしまい、特殊な状況を除いて温度の取り扱いが煩雑になる。熱力学温度はシャルルの法則や熱力学第二法則のような物質固有の性質に依存しない法則に基づいて定められるため、物質の選択にまつわる困難を避けることができる。 熱力学温度が持つもう一つの基本的な性質として、下限の存在が挙げられる。熱力学温度の下限は実現可能な熱力学的平衡状態熱力学や統計力学に関する文献では単に平衡状態と呼ばれることが多い。を決定する。この熱力学温度の下限は絶対零度と呼ばれる。 統計力学の分野においては逆温度が定義されしばしば熱力学温度に代わって用いられる。逆温度 は(理想気体温度の意味での)熱力学温度 に反比例する ことが知られ( はボルツマン定数)、このことが の名前の由来となっている。 また統計力学では「絶対零度を下回る」温度として負温度が導入されるが、負温度は熱力学や平衡統計力学の意味での温度とは異なる概念である。熱力学で用いられる通常の温度は平衡状態の系を特徴づける物理量だが、負温度は反転分布の実現するような非平衡系や系のエネルギーに上限が存在するような特殊な系を特徴づける量である。負温度はある種の非平衡系に対してカノニカル分布を拡張した際に、この分布に対する逆温度の逆数(をボルツマン定数で割ったもの)として定義され、負の値をとる。すなわち、負の逆温度 に対し負温度 は という関係が成り立つように定められる。この関係は通常の(正の)温度と逆温度の関係をそのまま非平衡系に対して適用したものとなっている。しかしながらその元となる逆温度と温度の対応関係は、統計力学で定義される諸々の熱力学ポテンシャルが熱力学で定義されたものと(漸近的に)一致するという要請から導かれるものであり、負温度が実現する系において同様の関係が成り立つと考える必然性はない。 熱力学温度はしばしば絶対温度(ぜったいおんど、absolute temperature)とも呼ばれる。多くの場合、熱力学温度と絶対温度は同義であるが、「絶対温度」という言葉の用法はまちまちであり「カルノーの定理や理想気体の状態方程式から定義できる自然な温度」を指すこともあれば、「温度単位としてケルビンを選んだ場合の温度」ないし「絶対零度を基準点とする温度」のようなより限定された意味で用いられることもある。 気体分子運動論によれば分子が持つ運動エネルギーの期待値は絶対零度において 0 となる。このとき、分子の運動は完全に停止していると考えられる。しかしながら、極低温の環境において古典力学に基づく運動論は完全に破綻するため、そのような古典的な描像は意味を持たない。.

新しい!!: 宇宙マイクロ波背景放射と熱力学温度 · 続きを見る »

銀河

銀河(ぎんが、galaxy)は、恒星やコンパクト星、ガス状の星間物質や宇宙塵、そして重要な働きをするが正体が詳しく分かっていない暗黒物質(ダークマター)などが重力によって拘束された巨大な天体である。英語「galaxy」は、ギリシア語でミルクを意味する「gála、γᾰ́λᾰ」から派生した「galaxias、γαλαξίας」を語源とする。英語で天の川を指す「Milky Way」はラテン語「Via Lactea」の翻訳借用であるが、このラテン語もギリシア語の「galaxías kýklos、γαλαξίας κύκλος」から来ている。 1,000万 (107) 程度の星々で成り立つ矮小銀河から、100兆 (1014) 個の星々を持つ巨大なものまであり、これら星々は恒星系、星団などを作り、その間には星間物質や宇宙塵が集まる星間雲、宇宙線が満ちており、質量の約90%を暗黒物質が占めるものがほとんどである。観測結果によれば、すべてではなくともほとんどの銀河の中心には超大質量ブラックホールが存在すると考えられている。これは、いくつかの銀河で見つかる活動銀河の根源的な動力と考えられ、銀河系もこの一例に当たると思われる。 歴史上、その具体的な形状を元に分類され、視覚的な形態論を以って考察されてきたが、一般的な形態は、楕円形の光の輪郭を持つ楕円銀河である。ほかに渦巻銀河(細かな粒が集まった、曲がった腕を持つ)や不規則銀河(不規則でまれな形状を持ち、近くの銀河から引力の影響を受けて形を崩したもの)等に分類される。近接する銀河の間に働く相互作用は、時に星形成を盛んに誘発しながらスターバースト銀河へと発達し、最終的に合体する場合もある。特定の構造を持たない小規模な銀河は不規則銀河に分類される。 観測可能な宇宙の範囲だけでも、少なくとも1,700億個が存在すると考えられている。大部分の直径は1,000から100,000パーセクであり、中には数百万パーセクにもなるような巨大なものもある。は、13当たり平均1個未満の原子が存在するに過ぎない非常に希薄なガス領域である。ほとんどは階層的な集団を形成し、これらは銀河団やさらに多くが集まった超銀河団として知られている。さらに大規模な構造では、銀河団は超空洞と呼ばれる銀河が存在しない領域を取り囲む銀河フィラメントを形成する。.

新しい!!: 宇宙マイクロ波背景放射と銀河 · 続きを見る »

黒体放射

黒体放射()とは黒体が放出する熱放射で黒体の温度のみで定まり、実在する物体の放射度は、概して黒体の放射度よりも小さく、黒体放射の波長はプランクの放射式によって理論的に定まる。 温度が低いときは赤っぽく、温度が高いほど青白くなる。夜空に輝く星々も青白い星ほど温度が高い。温度はK(ケルビン)で表示される。 理想的な黒体放射をもっとも再現するとされる空洞放射が温度のみに依存するという法則は、1859年にグスタフ・キルヒホフにより発見された。以来、空洞放射のスペクトルを説明する理論が研究され、最終的に1900年にマックス・プランクによりプランク分布が発見されたことで、その理論が完成された。 物理的に黒体放射をプランク分布で説明するためには、黒体が電磁波を放出する(電気双極子が振動する)ときの振動子の量子化を仮定する必要がある(プランクの法則)。つまり、振動子が持ちうるエネルギー は振動数 の整数倍に比例しなければならない。 この比例定数 は、後にプランク定数とよばれ、物理学の基本定数となった。これは、物理量は連続な値をとり量子化されない、とする古典力学と反する仮定であったが、1905年にアルベルト・アインシュタインがこのプランクの量子化の仮定と光子の概念とを用いて光電効果を説明したことにより、この量子化の仮定に基づいた量子力学が築かれることとなった。.

新しい!!: 宇宙マイクロ波背景放射と黒体放射 · 続きを見る »

赤方偏移

赤方偏移(せきほうへんい、redshift)とは、主に天文学において、観測対象からの光(可視光だけでなく全ての波長の電磁波を含む)のスペクトルが長波長側(可視光で言うと赤に近い方)にずれる現象を指す。 波長λのスペクトルがΔλだけずれている場合、赤方偏移の量 z を と定義する。.

新しい!!: 宇宙マイクロ波背景放射と赤方偏移 · 続きを見る »

量子ゆらぎ

量子物理学において量子ゆらぎ(または量子真空ゆらぎ、真空ゆらぎ)は 空間のある点におけるエネルギーの一時的な変化で、ヴェルナー・ハイゼンベルクの不確定性原理で説明される。 これにより仮想粒子の粒子-反粒子対が生成する。 これらの粒子の効果は測定可能であり、例えば電子の有効電荷は「裸の」電荷とは異なっている。 量子ゆらぎは宇宙の構造の起源において非常に重要である。 インフレーションのモデルによれば、インフレーションが始まったときに存在した宇宙は増幅され、現在観測されるすべての構造の種を作った。 真空エネルギーは現在の宇宙の加速(宇宙定数)の原因である。 原理により、エネルギーと時間は次の関係でつながっている。 現代の視点では、エネルギーは常に保存されるが、粒子数演算子は場のハミルトニアンまたはエネルギー演算子と交換しない。 よって場の最低エネルギー状態(基底状態、真空状態)は、名前から予想されるような粒子が存在しない状態ではなく、 粒子数が0, 1, 2...などの粒子数固有状態の重ね合わせである。.

新しい!!: 宇宙マイクロ波背景放射と量子ゆらぎ · 続きを見る »

電子

電子(でんし、)とは、宇宙を構成するレプトンに分類される素粒子である。素粒子標準模型では、第一世代の荷電レプトンに位置付けられる。電子は電荷−1、スピンのフェルミ粒子である。記号は e で表される。また、ワインバーグ=サラム理論において弱アイソスピンは−、弱超電荷は−である。.

新しい!!: 宇宙マイクロ波背景放射と電子 · 続きを見る »

電子レンジ

電子レンジ 電子レンジ(でんしレンジ、microwave oven)とは、電磁波(電波)により、水分を含んだ食品などを発熱させる調理機器である。 日本における「電子レンジ」という名称は、1961年(昭和36年)12月、急行電車のビュフェ(サハシ153形)で東芝の製品をテスト運用した際に、国鉄の担当者がネーミングしたのが最初とされる。その後市販品にも使われ、一般的な名称となっていった。 英語では microwave oven (マイクロウェーブ・オーブン、直訳すると「マイクロ波オーブン」)で、しばしば microwave と略される。electronic ovenとも呼ばれる。.

新しい!!: 宇宙マイクロ波背景放射と電子レンジ · 続きを見る »

電磁波

電磁波(でんじは )は、空間の電場と磁場の変化によって形成される波(波動)である。いわゆる光(赤外線、可視光線、紫外線)や電波は電磁波の一種である。電磁放射()とも呼ばれる。現代科学において電磁波は波と粒子の性質を持つとされ、波長の違いにより様々な呼称や性質を持つ。通信から医療に至るまで数多くの分野で用いられている。 電磁波は波であるので、散乱や屈折、反射、また回折や干渉などの現象を起こし、 波長によって様々な性質を示す。このことは特に観測技術で利用されている。 微視的には、電磁波は光子と呼ばれる量子力学的な粒子であり、物体が何らかの方法でエネルギーを失うと、それが光子として放出される。また、光子を吸収することで物体はエネルギーを得る。.

新しい!!: 宇宙マイクロ波背景放射と電磁波 · 続きを見る »

陽子

陽子(ようし、())とは、原子核を構成する粒子のうち、正の電荷をもつ粒子である。英語名のままプロトンと呼ばれることも多い。陽子は電荷+1、スピン1/2のフェルミ粒子である。記号 p で表される。 陽子とともに中性子によって原子核は構成され、これらは核子と総称される。水素(軽水素、H)の原子核は、1個の陽子のみから構成される。電子が離れてイオン化した水素イオン(H)は陽子そのものであるため、化学の領域では水素イオンをプロトンと呼ぶことが多い。 原子核物理学、素粒子物理学において、陽子はクォークが結びついた複合粒子であるハドロンに分類され、2個のアップクォークと1個のダウンクォークで構成されるバリオンである。ハドロンを分類するフレーバーは、バリオン数が1、ストレンジネスは0であり、アイソスピンは1/2、超電荷は1/2となる。バリオンの中では最も軽くて安定である。.

新しい!!: 宇宙マイクロ波背景放射と陽子 · 続きを見る »

WMAP

WMAP WMAP で得られた宇宙マイクロ波背景放射の画像 比較:COBE で得られた宇宙マイクロ波背景放射の画像 ウィルキンソン・マイクロ波異方性探査機(Wilkinson Microwave Anisotropy Probe: WMAP)は、アメリカ航空宇宙局 (NASA) が打ち上げた宇宙探査機である。WMAP の任務はビッグバンの名残の熱放射である宇宙マイクロ波背景放射 (CMB) の温度を全天にわたってサーベイ観測することである。 この探査機は2001年6月30日午後3時46分 (EDT) にアメリカのケープカナベラル空軍基地からデルタIIロケットで打ち上げられ、太陽と地球のラグランジュ点 (L2) で2010年8月まで観測を行った。.

新しい!!: 宇宙マイクロ波背景放射とWMAP · 続きを見る »

暗黒物質

暗黒物質(あんこくぶっしつ、dark matter ダークマター)とは、天文学的現象を説明するために考えだされた「質量は持つが、光学的に直接観測できない」とされる、仮説上の物質である。"銀河系内に遍く存在する"、"物質とはほとんど相互作用しない"などといった想定がされており、間接的にその存在を示唆する観測事実は増えているものの、その正体は未だ不明である。.

新しい!!: 宇宙マイクロ波背景放射と暗黒物質 · 続きを見る »

恒星

恒星 恒星(こうせい)は、自ら光を発し、その質量がもたらす重力による収縮に反する圧力を内部に持ち支える、ガス体の天体の総称である。人類が住む地球から一番近い恒星は、太陽系唯一の恒星である太陽である。.

新しい!!: 宇宙マイクロ波背景放射と恒星 · 続きを見る »

欧州宇宙機関

欧州宇宙機関(おうしゅううちゅうきかん、, ASE、, ESA)は、1975年5月30日にヨーロッパ各国が共同で設立した、宇宙開発・研究機関である。設立参加国は当初10か国、現在は19か国が参加し、2000人を超えるスタッフがいる。 本部はフランスに置かれ、その活動でもフランス国立宇宙センター (CNES) が重要な役割を果たし、ドイツ・イタリアがそれに次ぐ地位を占める。主な射場としてフランス領ギアナのギアナ宇宙センターを用いている。 人工衛星打上げロケットのアリアンシリーズを開発し、アリアンスペース社(商用打上げを実施)を通じて世界の民間衛星打ち上げ実績を述ばしている。2010年には契約残数ベースで過去に宇宙開発などで存在感を放ったソビエト連邦の後継国のロシア、スペースシャトル、デルタ、アトラスといった有力な打ち上げ手段を持つアメリカに匹敵するシェアを占めるにおよび、2014年には受注数ベースで60%のシェアを占めるにいたった。 ESA は欧州連合と密接な協力関係を有しているが、欧州連合の専門機関ではない。加盟各国の主権を制限する超国家機関ではなく、加盟国の裁量が大きい政府間機構として形成された。リスボン条約によって修正された欧州連合の機能に関する条約の第189条第3項では、「欧州連合は欧州宇宙機関とのあいだにあらゆる適切な関係を築く」と規定されている。.

新しい!!: 宇宙マイクロ波背景放射と欧州宇宙機関 · 続きを見る »

水面から跳ね返っていく水滴 海水 水(みず)とは、化学式 HO で表される、水素と酸素の化合物である広辞苑 第五版 p. 2551 【水】。特に湯と対比して用いられ、温度が低く、かつ凝固して氷にはなっていないものをいう。また、液状のもの全般を指すエンジンの「冷却水」など水以外の物質が多く含まれているものも水と呼ばれる場合がある。日本語以外でも、しばしば液体全般を指している。例えば、フランス語ではeau de vie(オー・ドゥ・ヴィ=命の水)がブランデー類を指すなど、eau(水)はしばしば液体全般を指している。そうした用法は、様々な言語でかなり一般的である。。 この項目では、HO の意味での水を中心としながら、幅広い意味の水について解説する。.

新しい!!: 宇宙マイクロ波背景放射と水 · 続きを見る »

水素

水素(すいそ、hydrogenium、hydrogène、hydrogen)は、原子番号 1 、原子量 1.00794の非金属元素である。元素記号は H。ただし、一般的には「水素」と言っても、水素の単体である水素分子(水素ガス) H を指していることが多い。 質量数が2(原子核が陽子1つと中性子1つ)の重水素(H)、質量数が3(原子核が陽子1つと中性子2つ)の三重水素(H)と区別して、質量数が1(原子核が陽子1つのみ)の普通の水素(H)を軽水素とも呼ぶ。.

新しい!!: 宇宙マイクロ波背景放射と水素 · 続きを見る »

波長

波長(はちょう、Wellenlänge、wavelength)とは、空間を伝わる波(波動)の持つ周期的な長さのこと。空間は3次元と限る必要はない。 正弦波を考えると(つまり波形が時間や、空間の位置によって変わらない状態)、波長λには、 の関係がある。 \begin k \end は波数、 \begin \omega \end は角振動数、 \begin v \end は波の位相速度、 \begin f \end は振動数(周波数)である。波数 \begin k \end は k.

新しい!!: 宇宙マイクロ波背景放射と波長 · 続きを見る »

月(つき、Mond、Lune、Moon、Luna ルーナ)は、地球の唯一の衛星(惑星の周りを回る天体)である。太陽系の衛星中で5番目に大きい。地球から見て太陽に次いで明るい。 古くは太陽に対して太陰とも、また日輪(.

新しい!!: 宇宙マイクロ波背景放射と月 · 続きを見る »

日経サイエンス

日本経済新聞社 内 |設立.

新しい!!: 宇宙マイクロ波背景放射と日経サイエンス · 続きを見る »

1940年代

1940年代(せんきゅうひゃくよんじゅうねんだい)は、西暦(グレゴリオ暦)1940年から1949年までの10年間を指す十年紀。.

新しい!!: 宇宙マイクロ波背景放射と1940年代 · 続きを見る »

1941年

記載なし。

新しい!!: 宇宙マイクロ波背景放射と1941年 · 続きを見る »

1960年代

1960年代(せんきゅうひゃくろくじゅうねんだい)は、西暦(グレゴリオ暦)1960年から1969年までの10年間を指す十年紀。この項目では、国際的な視点に基づいた1960年代について記載する。.

新しい!!: 宇宙マイクロ波背景放射と1960年代 · 続きを見る »

1964年

記載なし。

新しい!!: 宇宙マイクロ波背景放射と1964年 · 続きを見る »

1970年代

1970年代(せんきゅうひゃくななじゅうねんだい)は、西暦(グレゴリオ暦)1970年から1979年までの10年間を指す十年紀。この項目では、国際的な視点に基づいた1970年代について記載する。.

新しい!!: 宇宙マイクロ波背景放射と1970年代 · 続きを見る »

1978年

記載なし。

新しい!!: 宇宙マイクロ波背景放射と1978年 · 続きを見る »

1989年

この項目では、国際的な視点に基づいた1989年について記載する。.

新しい!!: 宇宙マイクロ波背景放射と1989年 · 続きを見る »

1996年

この項目では、国際的な視点に基づいた1996年について記載する。.

新しい!!: 宇宙マイクロ波背景放射と1996年 · 続きを見る »

2000年

400年ぶりの世紀末閏年(20世紀および2千年紀最後の年)である100で割り切れるが、400でも割り切れる年であるため、閏年のままとなる(グレゴリオ暦の規定による)。。Y2Kと表記されることもある(“Year 2000 ”の略。“2000”を“2K ”で表す)。また、ミレニアムとも呼ばれる。 この項目では、国際的な視点に基づいた2000年について記載する。.

新しい!!: 宇宙マイクロ波背景放射と2000年 · 続きを見る »

2001年

また、21世紀および3千年紀における最初の年でもある。この項目では、国際的な視点に基づいた2001年について記載する。.

新しい!!: 宇宙マイクロ波背景放射と2001年 · 続きを見る »

2003年

この項目では、国際的な視点に基づいた2003年について記載する。.

新しい!!: 宇宙マイクロ波背景放射と2003年 · 続きを見る »

21cm線

21cm線(21センチメートルせん、)は、中性水素原子のエネルギー状態の変化によって放射されるスペクトル線である。 21cm線は周波数 の電波であり、その波長が であることからこの名が付けられている。21cm線は天文学、特に電波天文学の分野で広く使われている。.

新しい!!: 宇宙マイクロ波背景放射と21cm線 · 続きを見る »

ここにリダイレクトされます:

3K放射3K輻射3K背景放射3K背景輻射3K黒体放射CMBRCMB放射マイクロ波背景放射宇宙マイクロ波背景輻射宇宙背景放射宇宙背景輻射最後の散乱面背景放射背景輻射

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »