ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
ダウンロード
ブラウザよりも高速アクセス!
 

線型結合

索引 線型結合

線型結合(せんけいけつごう、)は、線型代数学およびその関連分野で用いられる中心的な概念の一つで、平たく言えば、ベクトルの定数倍と加え合わせのことである。一次結合あるいは線型和とも呼ぶ。 いくつかのベクトルを組み合わせると他のベクトルを作ることができる。例えば、2次元数ベクトルを例にとれば、ベクトル v.

27 関係: 基底 (線型代数学)単体 (数学)可換体ハメル次元ベクトルベクトル空間アーベル群アフィン空間アフィン結合スカラー凸結合凸錐凸集合確率分布符号付測度線型代数学線型位相空間線型部分空間環上の加群生成 (数学)順序体順序環超平面錐結合測度論濃度 (数学)数ベクトル空間

基底 (線型代数学)

線型代数学における基底(きてい、basis)は、線型独立なベクトルから成る集合で、そのベクトルの(有限個の)線型結合として、与えられたベクトル空間の全てのベクトルを表すことができるものを言う。もう少し緩やかな言い方をすれば、基底は(基底ベクトルに決まった順番が与えられたものとして)「座標系」を定めるようなベクトルの集合である。硬い表現で言うならば、基底とは線型独立な生成系のことである。 ベクトル空間に基底が与えられれば、その空間の元は必ず基底ベクトルの線型結合としてただ一通りに表すことができる。全てのベクトル空間は必ず基底を持つ(ただし、無限次元ベクトル空間に対しては、一般には選択公理が必要である)。また、一つのベクトル空間が有するどの基底も、必ず同じ決まった個数(濃度)のベクトルからなる。この決まった数を、そのベクトル空間の次元と呼ぶ。.

新しい!!: 線型結合と基底 (線型代数学) · 続きを見る »

単体 (数学)

数学、とくに位相幾何学において、n 次元の単体(たんたい、simplex)とは、「r ≤ n ならばどの r + 1 個の点も r − 1 次元の超平面に同時に含まれることのない」ような n + 1 個の点からなる集合の凸包のことで、点・線分・三角形・四面体といった基本的な図形の n 次元への一般化である。 単体は、頂点の位置さえ決めればそれのみによって一意的に決定される。さらに単体は単体的複体や鎖複体などの概念を与えるが、これらはさらに抽象化されて、幾何学を組合せ論的あるいは代数的に扱う道具となる。また逆に、抽象化された複体の概念から単体が定義される。.

新しい!!: 線型結合と単体 (数学) · 続きを見る »

可換体

抽象代数学において、可換体(かかんたい、corps commutatif)あるいは単に体(たい、field)本記事において単に体と言った場合「可換」体を意味するものとする。とは、零でない可換可除環、あるいは同じことだが、非零元全体が乗法の下で可換群をなすような環のことである。そのようなものとして体は、適当なアーベル群の公理と分配則を満たすような加法、減法、乗法、除法の概念を備えた代数的構造である。最もよく使われる体は、実数体、複素数体、有理数体であるが、他にも有限体、関数の体、代数体、''p'' 進数体、などがある。 任意の体は、線型代数の標準的かつ一般的な対象であるベクトル空間のスカラーとして使うことができる。(ガロワ理論を含む)体拡大の理論は、ある体に係数を持つ多項式の根に関係する。他の結果として、この理論により、古典的な問題である定規とコンパスを用いたや円積問題が不可能であることの証明や五次方程式が代数的に解けないというアーベル・ルフィニの定理の証明が得られる。現代数学において、体論は数論や代数幾何において必要不可欠な役割を果たしている。 代数的構造として、すべての体は環であるが、すべての環が体であるわけではない。最も重要な違いは、体は(ゼロ除算を除いて)除算ができるが、環は乗法逆元がなくてもよいということである。例えば、整数の全体は環をなすが、2x.

新しい!!: 線型結合と可換体 · 続きを見る »

ハメル次元

数学における、ベクトル空間の次元(じげん、dimension)とは、その基底の濃度、すなわち基底に属するベクトルの個数)である。 他の種類の次元との区別のため、ハメル次元または代数次元と呼ばれることもある。この定義は「任意のベクトル空間は(選択公理を仮定すれば)基底を持つ」ことと「一つのベクトル空間の基底は、どの二つも必ず同じ濃度を持つ」という二つの事実に依存しており、これらの事実の結果として、ベクトル空間の次元は空間に対して一意的に定まる。体 F 上のベクトル空間 V の次元を dimF(V) あるいは で表す(文脈から基礎とする体 F が明らかならば単に dim(V) と書く)。 ベクトル空間 V が有限次元であるとは、その次元が有限値であるときにいう。.

新しい!!: 線型結合とハメル次元 · 続きを見る »

ベクトル

ベクトル()またはベクター() ベクトルは Vektor に由来し、ベクターは vector に由来する。物理学などの自然科学の領域ではベクトル、プログラミングなどコンピュータ関係ではベクターと表記される、という傾向が見られることもある。また、技術文書などではしばしばJIS規格に準拠する形で、長音を除いたベクタという表記が用いられる。 は「運ぶ」を意味するvehere に由来し、18世紀の天文学者によってはじめて使われた。 ベクトルは通常の数(スカラー)と区別するために矢印を上に付けたり(例: \vec,\ \vec)、太字で書いたりする(例: \boldsymbol, \boldsymbol)が、分野によっては矢印も太字もせずに普通に書くこともある(主に解析学)。 ベクトル、あるいはベクターに関する記事と用法を以下に挙げる。.

新しい!!: 線型結合とベクトル · 続きを見る »

ベクトル空間

数学、特に線型代数学におけるベクトル空間(ベクトルくうかん、vector space)、または、線型空間(せんけいくうかん、linear space)は、ベクトルと呼ばれる元からなる集まりの成す数学的構造である。ベクトルには和が定義され、またスカラーと呼ばれる数による積(「スケール変換」)を行える。スカラーは実数とすることも多いが、複素数や有理数あるいは一般の体の元によるスカラー乗法を持つベクトル空間もある。ベクトルの和とスカラー倍の演算は、「ベクトル空間の公理」と呼ばれる特定の条件(後述)を満足するものでなければならない。ベクトル空間の一つの例は、力のような物理量を表現するのに用いられる幾何ベクトルの全体である(同じ種類の任意の二つの力は、加え合わせて力の合成と呼ばれる第三の力のベクトルを与える。また、力のベクトルを実数倍したものはまた別の力のベクトルを表す)。同じ調子で、ただしより幾何学的な意味において、平面や空間での変位を表すベクトルの全体もやはりベクトル空間を成す。 ベクトル空間は線型代数学における主題であり、ベクトル空間はその次元(大雑把にいえばその空間の独立な方向の数を決めるもの)によって特徴づけられるから、その観点からはよく知られている。ベクトル空間は、さらにノルムや内積などの追加の構造を持つこともあり、そのようなベクトル空間は解析学において主に函数をベクトルとする無限次元の函数空間の形で自然に生じてくる。解析学的な問題では、ベクトルの列が与えられたベクトルに収束するか否かを決定することもできなければならないが、これはベクトル空間に追加の構造を考えることで実現される。そのような空間のほとんどは適当な位相を備えており、それによって近さや連続性といったことを考えることができる。こういた位相線型空間、特にバナッハ空間やヒルベルト空間については、豊かな理論が存在する。 歴史的な視点では、ベクトル空間の概念の萌芽は17世紀の解析幾何学、行列論、連立一次方程式の理論、幾何ベクトルの概念などにまで遡れる。現代的な、より抽象的な取扱いが初めて定式化されるのは、19世紀後半、ペアノによるもので、それはユークリッド空間よりも一般の対象が範疇に含まれるものであったが、理論の大半は(直線や平面あるいはそれらの高次元での対応物といったような)古典的な幾何学的概念を拡張することに割かれていた。 今日では、ベクトル空間は数学のみならず科学や工学においても広く応用される。ベクトル空間は線型方程式系を扱うための適当な線型代数学的概念であり、例えば画像圧縮ルーチンで使われるフーリエ展開のための枠組みを提示したり、あるいは偏微分方程式の解法に用いることのできる環境を提供する。さらには、テンソルのような幾何学的および物理学的な対象を、抽象的に座標に依らない で扱う方法を与えてくれるので、そこからさらに線型化の手法を用いて、多様体の局所的性質を説明することもできるようになる。 ベクトル空間の概念は様々な方法で一般化され、幾何学や抽象代数学のより進んだ概念が導かれる。.

新しい!!: 線型結合とベクトル空間 · 続きを見る »

アーベル群

数学、とくに抽象代数学におけるアーベル群(アーベルぐん、abelian group)または可換群(かかんぐん、commutative group)は、群演算が可換な群、すなわちどの二つの元の積も掛ける順番に依らず定まる群を言う。名称は、ノルウェーの数学者ニールス・アーベルに因む。 アーベル群は環や体、環上の加群やベクトル空間といった抽象代数学の概念において、その基礎となる加法に関する群(加法群)としてしばしば生じる。任意の抽象アーベル群についても、しばしば加法的な記法(例えば群演算は "+" を用いて表され、逆元は負符号を元の前に付けることで表す)が用いられ、その場合に用語の濫用で「加法群」と呼ばれることがある。また任意のアーベル群は整数全体の成す環 上の加群とみることができ、その意味でやはり用語の濫用だがアーベル群のことを「加群」と呼ぶこともある。 一般に可換群はに比べて著しく容易であり、とくに有限アーベル群の構造は具さに知られているが、それでも無限アーベル群論はいまなお活発な研究領域である。.

新しい!!: 線型結合とアーベル群 · 続きを見る »

アフィン空間

数学において、アフィン空間(あふぃんくうかん、affine space, アファイン空間とも)または擬似空間(ぎじくうかん)とは、幾何ベクトルの存在の場であり、ユークリッド空間から絶対的な原点・座標と標準的な長さや角度などといった計量の概念を取り除いたアフィン構造を抽象化した幾何学的構造である。(代数的な)ベクトル空間からどの点が原点であるかを忘れたものと考えることもできる。 1次元のアフィン空間はアフィン直線、2次元のアフィン空間はと呼ばれる。.

新しい!!: 線型結合とアフィン空間 · 続きを見る »

アフィン結合

数学において、アフィン結合(アフィンけつごう、affine combination)は、ベクトル空間における線型結合の特別の場合であって、主に(ユークリッド空間などの)アフィン空間に対して用いられ、したがってこの概念はユークリッド幾何学において重要となる。 ある列ベクトル B に対して A を作用させる時、得られる結果は A の各行の成分を係数とする B のアフィン結合からなる列ベクトルである。.

新しい!!: 線型結合とアフィン結合 · 続きを見る »

スカラー

ラー、スカラ; scalar.

新しい!!: 線型結合とスカラー · 続きを見る »

凸結合

数学のの分野において、凸結合(凸けつごう、)とは、和が 1 となるような非負係数を持つ点(ベクトルやスカラー、あるいはより一般にアフィン空間の点)の線型結合である。 より正式に、実ベクトル空間に有限個の点 x_1, x_2, \dots, x_n\, が与えられたとき、それらの凸結合は次の式で表される点である。 但し実数 \alpha_i\, は \alpha_i\ge 0 および \alpha_1+\alpha_2+\cdots+\alpha_n.

新しい!!: 線型結合と凸結合 · 続きを見る »

凸錐

数学の線型代数学の分野において、凸錐(とつすい、)とは、ある順序体上のベクトル空間の部分集合で、正係数の線型結合の下で閉じているもののことを言う。.

新しい!!: 線型結合と凸錐 · 続きを見る »

凸集合

ユークリッド空間における物体が凸(とつ、convex)であるとは、その物体に含まれる任意の二点に対し、それら二点を結ぶ線分上の任意の点がまたその物体に含まれることを言う。例えば中身のつまった立方体は凸であるが、例えば三日月形のように窪みや凹みのあるものは何れも凸でない。は凸集合の境界を成す。 凸集合の概念は後で述べるとおり他の空間へも一般化することができる。.

新しい!!: 線型結合と凸集合 · 続きを見る »

確率分布

率分布(かくりつぶんぷ, probability distribution)は、確率変数の各々の値に対して、その起こりやすさを記述するものである。日本工業規格では、「確率変数がある値となる確率,又はある集合に属する確率を与える関数」と定義している。.

新しい!!: 線型結合と確率分布 · 続きを見る »

符号付測度

数学における符号付測度(ふごうつきそくど、)とは、負の値を取ることも許されることで一般化された測度である。正負両方の値を取り得る有名な分布である電荷(electric charge)に由来して、チャージと呼ばれることもある。.

新しい!!: 線型結合と符号付測度 · 続きを見る »

線型代数学

線型代数学(せんけいだいすうがく、linear algebra)とは、線型空間と線型変換を中心とした理論を研究する代数学の一分野である。現代数学において基礎的な役割を果たし、幅広い分野に応用されている。また、これは特に行列・行列式・連立一次方程式に関する理論を含む。線形などの用字・表記の揺れについては線型性を参照。 日本の大学においては、多くの理系学部学科で解析学(微分積分学)とともに初学年から履修する。なお、高校教育においては平成27年度からの新課程では行列の分野が除外されている。.

新しい!!: 線型結合と線型代数学 · 続きを見る »

線型位相空間

数学における線型位相空間(せんけいいそうくうかん、)とは、ベクトル空間の構造(線型演算)とその構造に両立する位相構造を持ったもののことである。係数体は実数体 R や複素数体 C などの位相体であり、ベクトルの加法やスカラー倍などの演算が連続写像になっていることが要請される。線型位相空間においては、通常のベクトル空間におけるような代数的な操作に加えて、興味のあるベクトルを他のベクトルで近似することが可能になり、関数解析学における基本的な枠組みが与えられる。 ベクトル空間の代数的な構造はその次元のみによって完全に分類されるが、特に無限次元のベクトル空間に対してその上に考えられる位相には様々なものがある。有限次元の実・複素ベクトル空間上の、意義のある位相はそれぞれの空間に対して一意的に決まってしまうことから、この多様性は無限次元に特徴的なものといえる。.

新しい!!: 線型結合と線型位相空間 · 続きを見る »

線型部分空間

数学、とくに線型代数学において、線型部分空間(せんけいぶぶんくうかん、linear subspace)または部分ベクトル空間(ぶぶんベクトルくうかん、vector subspace)とは、ベクトル空間の部分集合で、それ自身が元の空間の演算により線型空間になっているもののことである。 ベクトル空間のある部分集合が、それ自身ある演算に関してベクトル空間の構造を持っていたとしても、その演算がもとの空間の演算でないならば部分線型空間とは呼ばない、ということに注意されたい。また、文脈により紛れの恐れのない場合には、線型部分空間のことを単に部分空間と呼ぶことがある。.

新しい!!: 線型結合と線型部分空間 · 続きを見る »

環上の加群

抽象代数学における環上の加群(かぐん、module)とは、ベクトル空間を一般化した概念で、係数(スカラー)を体の元とする代わりに、より一般の環の元としたものである。つまり、加群とは(ベクトル空間がそうであるように)加法的なアーベル群であって、その元と環の元との間に乗法が定義され、その乗法が結合的かつ加法に関して分配的となるようなものである。 任意のアーベル群は有理整数環上の加群であり、したがって環上の加群はアーベル群の一般化でもある。また、環のイデアルは環上の加群であり、したがって環上の加群はイデアルの一般化でもある。このように環上の加群はベクトル空間・アーベル群・イデアルを包括する概念であるので、さまざまな議論を加群の言葉によって統一的に扱うことができるようになる。 加群は群の表現論に非常に近しい関連を持つ。また、加群は可換環論やホモロジー代数における中心概念の一つであり、ひろく代数幾何学や代数的位相幾何学において用いられる。.

新しい!!: 線型結合と環上の加群 · 続きを見る »

生成 (数学)

数学における生成(せいせい、generate)とは、与えられた対象と条件に対して、その条件を満たしかつ与えられた対象を全て含むような最小の構成物を求めることである。このとき与えられた対象の集まりを生成系(生成集合)(generating set) といい、生成集合の各元を生成元 (generator) という。また、「最小の構成物」は生成系から生成されるという。生成系が1つの対象からなるような場合には、生成系と生成元は同一視できる。.

新しい!!: 線型結合と生成 (数学) · 続きを見る »

順序体

数学における順序体(じゅんじょたい、ordered field)は、その元が全順序付けられた体であって、その順序が体の演算と両立するものを言う。歴史的にはヒルベルト、ヘルダー、ハーンらを含む数学者たちによって徐々にぼんやりと公理化が進められ、1926年に順序体および(形式的)実体に関するによって結実する。 順序体は標数 でなければならず、任意の自然数 は全て相異なる。従って順序体は無限個の元を含まねばならず、有限体は順序付けることができない。 順序体の任意の部分体は、もとの体の順序に関してそれ自身順序体を成す。任意の順序体は有理数体に同型な部分順序体を含む。任意の順序体は実数体に同型である。順序体において平方元は非負でなければならない。従って複素数体は(虚数単位 の平方が だから)順序付けることはできない。任意の順序体は実体である。.

新しい!!: 線型結合と順序体 · 続きを見る »

順序環

抽象代数学において、順序環(じゅんじょかん、)は、演算と両立するような全順序が定義された(通常は可換な)環を言う。即ち、 が順序環であるとき、任意の元 に対し、以下の二つが成り立つ。.

新しい!!: 線型結合と順序環 · 続きを見る »

超平面

初等幾何学における超平面(ちょうへいめん、hyperplane)の概念は、二次元の平面をそれ以外の次元へ一般化するものである。''n''-次元空間における超平面とは、次元が n − 1 の平坦な部分空間をいう。その特質として、一つの超平面は全体空間を二つの半空間に分割する。.

新しい!!: 線型結合と超平面 · 続きを見る »

錐結合

数学に現れる錐結合(すいけつごう、)とは、実ベクトル空間内の有限個のベクトル x_1, x_2, \dots, x_n\, と、\alpha_i\ge 0 を満たす実数 \alpha_i\, に対して、次の式で表されるベクトルのことを言う: 錐和(conical sum)や加重和(weighted sum)とも呼ばれるConvex Analysis and Minimization Algorithms by Jean-Baptiste Hiriart-Urruty, Claude Lemaréchal, 1993, ISBN 3-540-56850-6, Mathematical Programming, by Melvyn W. Jeter (1986) ISBN 0-8247-7478-7, 。 ベクトルの錐結合は(低次元の部分空間内のものである場合もあるが)錐を定義するという事実より、そのような呼称が与えられている。.

新しい!!: 線型結合と錐結合 · 続きを見る »

測度論

測度論(そくどろん、measure theory )は、数学の実解析における一分野で、測度とそれに関連する概念(完全加法族、可測関数、積分等)を研究する。 ここで測度(そくど、measure )とは面積、体積、個数といった「大きさ」に関する概念を精緻化・一般化したものである。 よく知られているように積分は面積と関係があるので、積分(厳密にはルベーグ積分)も測度論を基盤にして定式化・研究できる。 また、測度の概念は確率を数学的に定式化する際にも用いられるため(コルモゴロフの公理)、 確率論や統計学においても測度論は重要である。 たとえば「サイコロの目が偶数になる確率 」は目が 1,..., 6 になるという 6 つの事象の集合の中で、2, 4, 6 という 3 つ分の「大きさ」を持っている為、 測度の概念で記述できる。.

新しい!!: 線型結合と測度論 · 続きを見る »

濃度 (数学)

数学、とくに集合論において、濃度(のうど)あるいは基数(きすう)(cardinal number, cardinality, power)とは、集合の「元の個数」という概念を拡張したものである。有限集合については、濃度は「元の個数」の同意語に過ぎない。。。.

新しい!!: 線型結合と濃度 (数学) · 続きを見る »

数ベクトル空間

数ベクトル空間(すうべくとるくうかん、space of numerical vectors, numerical vector space)とは、「“数”の組からなる空間」(数空間数空間のことを座標空間と呼ぶこともあるが、「座標系を備えた空間」という意味で座標空間と呼ぶこともあるので紛らわしい(の項も参照)。)を自然にベクトル空間と見たものである。.

新しい!!: 線型結合と数ベクトル空間 · 続きを見る »

ここにリダイレクトされます:

1次従属1次結合1次独立一次従属一次結合線形一次結合線形結合

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »