ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
インストール
ブラウザよりも高速アクセス!
 

1の冪根

索引 1の冪根

1の冪根(いちのべきこん、root of unity)、または1の累乗根(いちのるいじょうこん)は、数学において、冪乗して 1 になる(冪単である)ような数のことである。すなわち、ある自然数 n が存在して となる z のことである。通常は複素数の範囲で考えるが、場合によっては ''p'' 進数のような他の数の体系内で考える場合もある。以下では主として複素数の場合について述べる。 自然数 n に対し、m (\zeta_n.

19 関係: 単位円巡回群代数的数ド・モアブルの定理オイラーのφ関数カール・フリードリヒ・ガウス冪乗冪根円分多項式円分体複素平面複素数自然数虚数単位P進数正多角形方程式数学

単位円

数学において単位円(たんいえん、unit circle)とは、半径が 1 の円のことである。解析幾何学(いわゆる“座標幾何”)では特に原点(すなわち x 軸と y 軸の交点) O(0, 0) を中心とするものをいう。これは、原点からの距離が 1 であるような点の全体が描く軌跡のことと言っても同じことである。 単位円はしばしば S1 で表される(これは n 次元の球面 (sphere) という概念の n.

新しい!!: 1の冪根と単位円 · 続きを見る »

巡回群

群論における巡回群(じゅんかいぐん、cyclic group、monogenous group)とは、ただ一つの元で生成される群(単項生成群)のことである。ここで群が「ただ一つの元で生成される」というのは、その群の適当な元 g をとれば、その群のどの元も(群が乗法的に書かれている場合は)g の整数冪として(群が加法的に書かれている場合は g の整数倍として)表されるということであり、このような元 g はこの群の生成元 (generator) あるいは原始元 (primitive) と呼ばれる。.

新しい!!: 1の冪根と巡回群 · 続きを見る »

代数的数

代数的数(だいすうてきすう、algebraic number)とは、 複素数であって、有理数係数(あるいは同じことだが、分母を払って、 整数係数)の 0 でない一変数多項式の根 (すなわち多項式の値が 0 になるような値)となるものをいう。 すべての整数や有理数は代数的数であり、またすべての整数の冪根も代数的数である。 実数や複素数には代数的数でないものも存在し、そのような数は超越数と呼ばれる。 例えば π や e は超越数である。 ほとんどすべての複素数は超越数である(#集合論的性質)。.

新しい!!: 1の冪根と代数的数 · 続きを見る »

ド・モアブルの定理

ド・モアブルの定理(ド・モアブルのていり、de Moivre's theorem; ド・モアブルの公式(ド・モアブルのこうしき)とも)とは、複素数(特に実数) および整数 に対して が成り立つという、複素数と三角関数に関する定理である。定理の名称はアブラーム・ド・モアブル (Abraham de Moivre) に因むが、彼がこの定理について言及したわけではない。帰納法による証明では、三角関数の加法定理が利用される。 実数 と正の整数 に対してド・モアブルの定理を考えると、左辺を展開し右辺と実部・虚部を比較することにより、 倍角の公式が導出される。すなわち、ド・モアブルの公式は三角関数の 倍角の公式を内在的に含んでいる。 オイラーの公式: e^.

新しい!!: 1の冪根とド・モアブルの定理 · 続きを見る »

オイラーのφ関数

φ(''n'')の最初の1000個の値 オイラーのトーシェント関数(オイラーのトーシェントかんすう、Euler's totient function)は各正の整数 に対して、 から までの自然数のうち と互いに素なものの個数を として与えることによって定まる数論的関数 である。慣例的に と表記されるため、オイラーの 関数(ファイかんすう、phi function)とも呼ばれる。また、簡略的にオイラーの関数と呼ぶこともある。 例えば、 のうち と互いに素なのは の 2 個であるから、定義によれば である。また例えば のうち 以外は全て と互いに素だから、 と定まる。なおトーシェント関数の値域に含まれない自然数をノントーシェントという。 から までの値は以下の通りである。 1761年にレオンハルト・オイラーが発見したとされるが、それより数年前に日本の久留島義太が言及したとも言われる。.

新しい!!: 1の冪根とオイラーのφ関数 · 続きを見る »

カール・フリードリヒ・ガウス

Disquisitiones Arithmeticae のタイトルページ ヨハン・カール・フリードリヒ・ガウス(; Johann Carl Friedrich Gauß, Carolus Fridericus Gauss, 1777年4月30日 - 1855年2月23日)は、ドイツの数学者、天文学者、物理学者である。彼の研究は広範囲に及んでおり、特に近代数学のほとんどの分野に影響を与えたと考えられている。数学の各分野、さらには電磁気など物理学にも、彼の名が付いた法則、手法等が数多く存在する。19世紀最大の数学者の一人である。.

新しい!!: 1の冪根とカール・フリードリヒ・ガウス · 続きを見る »

冪乗

冪演算(べきえんざん、英: 独: 仏: Exponentiation)は、底 (base) および冪指数 (exponent) と呼ばれる二つの数に対して定まる数学的算法である。通常は、冪指数を底の右肩につく上付き文字によって示す。自然数 を冪指数とする冪演算は累乗(るいじょう、repeated multiplication) に一致する。 具体的に、 および冪指数 を持つ冪 (power) は、 が自然数(正整数)のとき、底の累乗 で与えられる。このとき は の -乗とか、-次の -冪などと呼ばれる。 よく用いられる冪指数に対しては、固有の名前が与えられているものがある。例えば冪指数 に対して二次の冪(二乗) は の平方 (square of) あるいは -自乗 (-squared) と呼ばれ、冪指数 に対する三次の冪 は の立方 (cube of, -cubed) と呼ばれる。また冪指数 に対して冪 は であり の逆数(あるいは乗法逆元)と呼ばれる。一般に負の整数 に対して底 が零でないとき、冪 はふつう なる性質を保つように と定義される。 冪演算は任意の実数あるいは複素数を冪指数とするように定義を拡張することができる。底および冪指数が実数であるような冪において、底を固定して冪指数を変数と見なせば指数函数が、冪指数を固定して底を変数と見れば冪函数がそれぞれ生じる。整数乗冪に限れば、行列などを含めた非常に多種多様な代数的対象に対してもそれを底とする冪を定義することができるが、冪指数まで同種の対象に拡張するならばその上で定義された自然指数函数と自然対数函数を持つ完備ノルム環(例えば実数全体 や複素数全体 などはそう)を想定するのが自然である。.

新しい!!: 1の冪根と冪乗 · 続きを見る »

冪根

冪根「冪」の字の代わりに略字の「巾」を用いることがある。(べきこん)、または累乗根(るいじょうこん)は、冪乗(累乗)に相対する概念で、冪乗すると与えられた数になるような新たな数のことをいう。数 の冪根はしばしば と書き表される。冪根 は以下の関係を満たす。 つまり、冪根 の 乗は に等しく、この意味で を の 乗根 と呼ぶ。 は指数 と呼ばれ、記号 は根号 と呼ばれる。また、根号の中に書かれた数 は時に被開平数 と呼ばれる。 根号を用いて冪根を表す場合、それは非負の値を持つ一価関数として扱われる。このような冪根を主要根 と呼び、特に 乗根の主要根を主平方根 と呼ぶ。 数 の主要根 は指数関数と結び付けられ、 という関係が成り立つ は自然指数関数、 は自然対数。。.

新しい!!: 1の冪根と冪根 · 続きを見る »

円分多項式

円分多項式(えんぶんたこうしき、cyclotomic polynomial, Kreisteilungspolynom)とは1の冪根に関連のある多項式である。具体的には次の式で定義される多項式 を指す。 \Phi_n \left(x\right).

新しい!!: 1の冪根と円分多項式 · 続きを見る »

円分体

円分体 (えんぶんたい、cyclotomic field) は、有理数体に、1 の m(>2) 乗根 \scriptstyle\zeta(\ne\pm 1) を添加した代数体である。円分体およびその部分体のことを円体ともいう。 以下において、特に断らない限り、\zeta_n.

新しい!!: 1の冪根と円分体 · 続きを見る »

複素平面

複素平面 数学において、数平面(すうへいめん、Zahlenebene)あるいは複素数­平面(ふくそすう­へいめん、Komplexe Zahlenebene, complex plane)は、数直線あるいは実数直線 (real line) を実軸 (real axis) として含む。 が実数であるとき、複素数 を単に実数の対とみなせば、平面の直交座標 の点に対応付けることができる。xy-平面上の y-軸は純虚数の全体に対応し、虚軸 (imaginary axis) と呼ばれる。-平面上の点 に複素数 を対応させるとき、-平面とも言う。 1811年頃にガウスによって導入されたため、ガウス平面 (Gaussian plane) とも呼ばれる。一方、それに先立つ1806年に も同様の手法を用いたため、アルガン図 (Argand Diagram) とも呼ばれている。さらに、それ以前の1797年の の書簡にも登場している。このように複素数の幾何的表示はガウス以前にも知られていたが、今日用いられているような形式で複素平面を論じたのはガウスである。三者の名前をとってガウス・アルガン平面、ガウス・ウェッセル平面などとも言われる。 英語名称 complex plane を「直訳」して複素平面と呼ぶことも少なくないが、ここにいう complex は「複素数上の—」という意味ではなく複素数そのものを意味している(複素数の全体を "the complexes" と呼んだり、" is a complex" などのような用例のあることを想起せよ)。したがって、語義に従った complex plane の直訳は「複素数平面」と考えるべきである(実数全体の成す real line についても同様であり、これは通例「実数直線」と訳され、実直線は多少異なる意味に用いられる)。.

新しい!!: 1の冪根と複素平面 · 続きを見る »

複素数

数学における複素数(ふくそすう、complex number)は、実数の対 と と線型独立な(実数ではない)要素 の線型結合 の形に表される数(二元数: 実数体上の二次拡大環の元)で、基底元 はその平方が になるという特別な性質を持ち虚数単位と呼ばれる。 複素数全体の成す集合を太字の あるいは黒板太字で と表す。 は、実数全体の成す集合 と同様に、可換体の構造を持ち、とくに を含む代数閉体を成す。複素数体はケイリー–ディクソン代数(四元数、八元数、十六元数など)の基点となる体系であり、またさまざまな超複素数系の中で最もよく知られた例である。 複素数の概念は、一次元の実数直線を二次元の複素数平面に拡張する。複素数は自然に二次元平面上に存在すると考えることができるから、複素数全体の成す集合上に自然な大小関係(つまり全順序)をいれることはできない。すなわち は順序体でない。 ある数学的な主題や概念あるいは構成において、それが複素数体を基本の体構造として考えられているとき、そのことはしばしばそれら概念等の名称に(おおくは接頭辞「複素-」を付けることで)反映される。例えば、複素解析、複素行列、複素(係数)多項式、複素リー代数など。.

新しい!!: 1の冪根と複素数 · 続きを見る »

自然数

自然数(しぜんすう、natural number)とは、個数、もしくは順番を表す一群の数のことである。集合論においては、自然数は物の個数を数える基数のうちで有限のものであると考えることもできるし、物の並べ方を示す順序数のうちで有限のものであると考えることもできる。 自然数を 1, 2, 3, … とする流儀と、0, 1, 2, 3, … とする流儀があり、前者は数論などでよく使われ、後者は集合論、論理学などでよく使われる(詳しくは自然数の歴史と零の地位の節を参照)。いずれにしても、0 を自然数に含めるかどうかが問題になるときは、その旨を明記する必要がある。自然数の代わりに非負整数または正整数と言い換えることによりこの問題を避けることもある。 数学の基礎付けにおいては、自然数の間の加法についての形式的な逆元を考えることによって整数を定義する。正の整数ないしは負でない整数を自然数と同一視し、自然数を整数の一部として取扱うことができる。自然数と同様に整数の全体も可算無限集合である。 なお、文脈によっては、その一群に属する個々の数(例えば 3 や 18)を指して自然数ということもある。.

新しい!!: 1の冪根と自然数 · 続きを見る »

虚数単位

虚数単位(きょすうたんい、imaginary unit)とは、−1 の平方根(2乗して −1 になる数)である2つの数のうちの1つの数のことである(どちらかを特定することはできない)。そのような数を記号で i または \sqrt で表す。 任意の実数の2乗は0以上なので、虚数単位は実数でない。数の概念を複素数に拡張すると登場する数である。 虚数単位の記号 i は imaginary の頭文字から採られている。ただし、i を別の意味(電流など)の記号として使う場合は、虚数単位を j などで表すことがある(どの文字を用いるかは自由である。その場合にはどの文字を用いるかを初めに必ず宣言する)。 積の交換法則が成り立たないことを許容すると、異なる3個以上の虚数単位からなる数の体系(非可換体)を考えることができる。3個の虚数単位の場合は i,j,k、7つ以上の虚数単位の組には i_1,i_2,\cdots といったように一つずつ添字を付けて表すことが多い。.

新しい!!: 1の冪根と虚数単位 · 続きを見る »

P進数

p 進数(ピーしんすう、p-adic number)とは、1897年にクルト・ヘンゼルによって導入された、数の体系の一つである。文脈によっては、その体系の個々の数を指して p 進数と呼ぶこともある。有理数の体系を実数や複素数の体系に拡張するのとは別の方法で、各素数 p に対して p 進数の体系が構成される。それらは有理数のつくる空間の局所的な姿を記述していると考えられ、数学の中でも特に数論において重要な役割を果たす。数学のみならず、素粒子物理学の理論などで使われることもある(例えば ''p'' 進量子力学を参照)。 「p 進数」とは「2進数」や「3進数」の総称に過ぎないので、文字 p がすでに他の場所で用いられている場合、q 進数や l 進数などと表現されることもある。 なお、自然数や実数を 0 と 1 で表現する方法(2進法)やその結果得られる記号列(2進列)も「2進数」と呼ぶ場合があるが、本項の意味での「2進数」とは異なる。.

新しい!!: 1の冪根とP進数 · 続きを見る »

正多角形

正多角形(せいたかっけい、せいたかくけい、regular polygon)とは、全ての辺の長さが等しく、全ての内角の大きさが等しい多角形である。 正多角形は線対称の図形であり、正n角形に対称軸はn本ある。また、正偶数角形は点対称の図形でもある。 辺の数が同じ正多角形どうしは全て互いに相似である。.

新しい!!: 1の冪根と正多角形 · 続きを見る »

方程式

14''x'' + 15.

新しい!!: 1の冪根と方程式 · 続きを見る »

数(かず、すう、number)とは、.

新しい!!: 1の冪根と数 · 続きを見る »

数学

数学(すうがく、μαθηματικά, mathematica, math)は、量(数)、構造、空間、変化について研究する学問である。数学の範囲と定義については、数学者や哲学者の間で様々な見解がある。.

新しい!!: 1の冪根と数学 · 続きを見る »

ここにリダイレクトされます:

1の原始べき根1の原始冪乗根1の原始冪根1の原始累乗根1の冪乗根1の累乗根原始冪根

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »