ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
ダウンロード
ブラウザよりも高速アクセス!
 

1−2+3−4+…

索引 1−2+3−4+…

1−2+3−4+… の部分和が発散する様子の模式図 1−2+3−4+… は無限級数の一つで、項番号と同じ自然数が各項に現れる交項級数として以下の式で表される。 その部分和は 1, −1, 2, −2, 3, −3, … と一定の値に近づくことはないので、この級数は発散するというのが一般的な解釈である。しかし計算方法によってはこの級数が収束すると考えることもでき、その場合の収束値は 1/4 である。これは18世紀にレオンハルト・オイラーによって発見された。その後エミール・ボレルらによって厳密な研究が行われ、その他の部分和が収束しない級数(1−1+1−1+… など)の収束値についても考察がなされた。.

23 関係: 交項級数微分法リーマンゼータ関数レオンハルト・オイラーヒューリスティクステイラー展開アーベル総和法エミール・ボレル公式級数無限発散発散級数解析接続自然数極限整数01+1+1+1+…1+2+3+4+…1/418世紀

交項級数

数学、とくに解析学における交項級数(こうこうきゅうすう)または交代級数(こうたいきゅうすう、alternating series)とは項の正負が交互に入れ替わる無限級数 である。同様の有限級数をしばしば交代和 (alternating sum) と呼ぶ。.

新しい!!: 1−2+3−4+…と交項級数 · 続きを見る »

微分法

数学における微分法(びぶんほう、differential calculus; 微分学)は微分積分学の分科で、量の変化に注目して研究を行う。微分法は積分法と並び、微分積分学を二分する歴史的な分野である。 微分法における第一の研究対象は函数の微分(微分商、微分係数)、および無限小などの関連概念やその応用である。函数の選択された入力における微分商は入力値の近傍での函数の変化率を記述するものである。微分商を求める過程もまた、微分 (differentiation) と呼ばれる。幾何学的にはグラフ上の一点における微分係数は、それが存在してその点において定義されるならば、その点における函数のグラフの接線の傾きである。一変数の実数値函数に対しては、一点における函数の微分は一般にその点における函数の最適線型近似を定める。 微分法と積分法を繋ぐのが微分積分学の基本定理であり、これは積分が微分の逆を行う過程であることを述べるものである。 微分は量を扱うほとんど全ての分野に応用を持つ。たとえば物理学において、動く物体の変位の時間に関する導函数はその物体の速度であり、速度の時間に関する導函数は加速度である。物体の運動量の導函数はその物体に及ぼされた力に等しい(この微分に関する言及を整理すればニュートンの第二法則に結び付けられる有名な方程式 が導かれる)。化学反応の反応速度も導函数である。オペレーションズ・リサーチにおいて導函数は物資転送や工場設計の最適な応報の決定に用いられる。 導函数は函数の最大値・最小値を求めるのに頻繁に用いられる。導函数を含む方程式は微分方程式と呼ばれ、自然現象の記述において基本的である。微分およびその一般化は数学の多くの分野に現れ、例えば複素解析、函数解析学、微分幾何学、測度論および抽象代数学などを挙げることができる。.

新しい!!: 1−2+3−4+…と微分法 · 続きを見る »

リーマンゼータ関数

1.

新しい!!: 1−2+3−4+…とリーマンゼータ関数 · 続きを見る »

レオンハルト・オイラー

レオンハルト・オイラー(Leonhard Euler, 1707年4月15日 - 1783年9月18日)は、18世紀の数学者・天文学者(天体物理学者)。 18世紀の数学の中心となり、続く19世紀の厳密化・抽象化時代の礎を築いた 日本数学会編『岩波数学辞典 第4版』、岩波書店、2007年、項目「オイラー」より。ISBN 978-4-00-080309-0 C3541 。スイスのバーゼルに生まれ、現在のロシアのサンクトペテルブルクにて死去した。.

新しい!!: 1−2+3−4+…とレオンハルト・オイラー · 続きを見る »

ヒューリスティクス

ヒューリスティック(heuristic, Heuristik)とは、必ず正しい答えを導けるわけではないが、ある程度のレベルで正解に近い解を得ることができる方法である。ヒューリスティックスでは、答えの精度が保証されない代わりに、回答に至るまでの時間が少ないという特徴がある。主に計算機科学と心理学の分野で使用される言葉であり、どちらの分野での用法も根本的な意味は同じであるが、指示対象が異なる。すなわち、計算機科学ではプログラミングの方法を指すが、心理学では人間の思考方法を指すものとして使われる。なお、論理学では仮説形成法と呼ばれている。.

新しい!!: 1−2+3−4+…とヒューリスティクス · 続きを見る »

テイラー展開

数学において、テイラー級数 (Taylor series) は関数のある一点での導関数たちの値から計算される項の無限和として関数を表したものである。そのような級数を得ることをテイラー展開という。 テイラー級数の概念はスコットランドの数学者ジェームズ・グレゴリーにより定式化され、フォーマルにはイギリスの数学者ブルック・テイラーによって1715年に導入された。0 を中心としたテイラー級数は、マクローリン級数 (Maclaurin series) とも呼ばれる。これはスコットランドの数学者コリン・マクローリンにちなんでおり、彼は18世紀にテイラー級数のこの特別な場合を積極的に活用した。 関数はそのテイラー級数の有限個の項を用いて近似することができる。テイラーの定理はそのような近似による誤差の定量的な評価を与える。テイラー級数の最初のいくつかの項として得られる多項式はと呼ばれる。関数のテイラー級数は、その関数のテイラー多項式で次数を増やした極限が存在すればその極限である。関数はそのテイラー級数がすべての点で収束するときでさえもテイラー級数に等しいとは限らない。開区間(あるいは複素平面の開円板)でテイラー級数に等しい関数はその区間上の解析関数と呼ばれる。.

新しい!!: 1−2+3−4+…とテイラー展開 · 続きを見る »

アーベル総和法

解析学において、アーベル総和法(アーベルそうわほう、Abel's summability method)とは、級数に対し、有限値を対応させる総和法の一つ石黒 (1977)、第2章江沢(1995)、第4章。ベキ級数におけるアーベルの定理に因む。.

新しい!!: 1−2+3−4+…とアーベル総和法 · 続きを見る »

エミール・ボレル

ミール・ボレル (Félix Édouard Justin Émile Borel, 1871年1月7日-1956年2月3日) は、フランスの数学者、政治家。ボレル測度などで知られ、アンリ・ルベーグとともに測度論の先駆者となった。また、ゲーム理論に関する論文もいくつか発表した。.

新しい!!: 1−2+3−4+…とエミール・ボレル · 続きを見る »

公式

数学において公式(こうしき)とは、数式で表される定理のことである。転じて比喩的に「問題を簡単に解決することができる魔法のようなもの」というような意味で用いられることがある。同様な意味で「方程式」という言葉が用いられることも多い。.

新しい!!: 1−2+3−4+…と公式 · 続きを見る »

級数

数学における級数 (きゅうすう、series) とは、ひと口に言えば数や関数など互いに足すことのできる数学的対象の列について考えられる無限項の和のことである。ただし「無限の項の総和」が何を表しているのかということはしばしば解析学の言葉を用いて様々な場合に意味を与える(#級数の収束性の節を参照)ことができるが、そのようなことができない「発散する級数」もあれば、級数自体を新たな形式的対象としてとらえることもある。小さくなっていく実数を項とする級数の収束性については様々な判定条件が与えられている。 級数を表す記法として、和記号 を用いた表現 や三点リーダ を用いた表現 などがある。 有限個の項以外は とすることで有限個の対象の和を表すこともでき、無限項の和であることを特に強調する場合には無限級数とも言う。無限の項の和の形に表された級数が何を表しているかということは一見必ずしも明らかではないため、何らかの意味付けを与えなければならない。最もよく採用される理解の方法は、有限個の項の和が収束する先を無限級数の値とすることである。例えば、 より となる。このほかに、解析接続などの手法により、みかけ上発散している級数に対して のような等式が意味付けされることもある。.

新しい!!: 1−2+3−4+…と級数 · 続きを見る »

無限

無限(むげん、infinity、∞)とは、限りの無いことである。 直感的には「限界を持たない」というだけの単純に理解できそうな概念である一方で、直感的には有限な世界しか知りえないと思われる人間にとって、無限というものが一体どういうことであるのかを厳密に理解することは非常に難しい問題を含んでいる。このことから、しばしば哲学、論理学や自然科学などの一部の分野において考察の対象として無限という概念が取り上げられ、そして深い考察が得られている。 本項では、数学などの学問分野において、無限がどのように捉えられ、どのように扱われるのかを記述する。.

新しい!!: 1−2+3−4+…と無限 · 続きを見る »

発散

散(はっさん、Divergence)は、; 数学.

新しい!!: 1−2+3−4+…と発散 · 続きを見る »

発散級数

数学において発散級数(はっさんきゅうすう、divergent series)とは、収束しない級数である、つまり、部分和の成す無限列が有限な極限を持たない級数である。 級数が収束するならば、級数の各項の成す数列は必ず 0 に収束する。したがって、0 に収束しないような数列を項に持つ級数はいずれも発散する。しかし、級数の収束性はそれよりも強い条件で、級数の項が 0 に収束するからといって必ずしもその級数自身は収束しない。最も簡単な反例として、調和級数 が挙げられる。調和級数の発散性は、中世の数学者ニコル・オレームによって示された。 数学の特別な文脈では、部分和の列が発散するようなある種の列について、その和として意味のある値を割り当てることができる。総和法 (summability method, summation method) とは、級数の部分和の列全体の成す集合から「和の値」の集合への部分写像である。例えば、チェザロ総和法ではグランディの発散級数 に 1/2 を値として割り当てる。チェザロ総和法は平均化法 (averaging method) の一種で、部分和の列の算術平均をとることに基づいている。他の方法としては、関連する級数の解析接続として和を定める方法などがある。物理学では、非常に多種多様な総和法が用いられる(詳細はの項を参照)。.

新しい!!: 1−2+3−4+…と発散級数 · 続きを見る »

; 項(こう); 項(うなじ) Category:曖昧さ回避.

新しい!!: 1−2+3−4+…と項 · 続きを見る »

解析接続

解析学において、解析接続 (かいせきせつぞく、analytic continuation, analytic prolongation) とはリーマン球面 C 上の領域で定義された有理型関数に対して定義域の拡張を行う手法の一つ、あるいは、その拡張によって得られた関数の事である。.

新しい!!: 1−2+3−4+…と解析接続 · 続きを見る »

自然数

自然数(しぜんすう、natural number)とは、個数、もしくは順番を表す一群の数のことである。集合論においては、自然数は物の個数を数える基数のうちで有限のものであると考えることもできるし、物の並べ方を示す順序数のうちで有限のものであると考えることもできる。 自然数を 1, 2, 3, … とする流儀と、0, 1, 2, 3, … とする流儀があり、前者は数論などでよく使われ、後者は集合論、論理学などでよく使われる(詳しくは自然数の歴史と零の地位の節を参照)。いずれにしても、0 を自然数に含めるかどうかが問題になるときは、その旨を明記する必要がある。自然数の代わりに非負整数または正整数と言い換えることによりこの問題を避けることもある。 数学の基礎付けにおいては、自然数の間の加法についての形式的な逆元を考えることによって整数を定義する。正の整数ないしは負でない整数を自然数と同一視し、自然数を整数の一部として取扱うことができる。自然数と同様に整数の全体も可算無限集合である。 なお、文脈によっては、その一群に属する個々の数(例えば 3 や 18)を指して自然数ということもある。.

新しい!!: 1−2+3−4+…と自然数 · 続きを見る »

極限

数学においては、数列など、ある種の数学的対象をひとまとまりに並べて考えたものについての極限(きょくげん、limit)がしばしば考察される。数の列がある値に限りなく近づくとき、その値のことを数列の極限あるいは極限値といい、この数列は収束するという。収束しない場合は、発散するという。 極限を表す記号として、次のような lim (英語:limit, リミット、ラテン語:limes)という記号が一般的に用いられる。.

新しい!!: 1−2+3−4+…と極限 · 続きを見る »

整数

数学における整数(せいすう、integer, whole number, Ganze Zahl, nombre entier, número entero)は、0 とそれに 1 ずつ加えていって得られる自然数 (1, 2, 3, 4, …) および 1 ずつ引いていって得られる数 (−1, −2, −3, −4, …) の総称である。 整数は数直線上の格子点として視覚化される 整数の全体からなる集合は普通、太字の Z または黒板太字の \mathbb Z で表す。これはドイツ語 Zahlen(「数」の意・複数形)に由来する。 抽象代数学、特に代数的整数論では、しばしば「代数体の整数環」の元という意味で代数的整数あるいは「整数」という言葉を用いる。有理数全体の成す体はそれ自身が代数体の最も簡単な例であり、有理数体の代数体としての整数環すなわち、「有理数の中で整なもの」の全体の成す環は、本項でいう意味での整数全体の成す環である。一般の「整数」との区別のためにここでいう意味の整数を有理整数 (rational integer) と呼ぶことがある接頭辞「有理(的)」(rational) はそもそも「整数比」であるという意味なので、この呼称は自己循環的にもみえる。しかし、有理整数と呼ぶ場合の「有理」は「有理数の中で」という程度の意味の単なる符牒であって、「整数比」という本来の意味合いに拘るのは徒労である。。.

新しい!!: 1−2+3−4+…と整数 · 続きを見る »

0

0 |- | Divisors || all numbers |- | Roman numeral || N/A |- | Arabic || style.

新しい!!: 1−2+3−4+…と0 · 続きを見る »

1+1+1+1+…

数学において、1 + 1 + 1 + 1 + · · · は発散する級数のひとつである。つまり、その部分和の列がいかなる実数にも収束しない。\sum_^ n^0 や \sum_^ 1^n、あるいは単に \sum_^ 1 とも書かれる。これは公比が 1 の幾何級数と考えることもできる。他の(−1 を除く)有理数の公比をもった幾何級数とは違って、実数においてもp-進数においても収束しない。拡張実数で考えれば、 である、なぜならばその部分和の列は上限なしに単調に増加するからである。 の和が物理的応用において現れるとき、それはときどきゼータ関数の正規化によって解釈されるかもしれない。それはリーマンのゼータ関数 の における値である。しかしながら上記2つの式は 0 において有効でないので、リーマンのゼータ関数の解析接続を用いなければならない。 これを使うことで(\Gamma (1).

新しい!!: 1−2+3−4+…と1+1+1+1+… · 続きを見る »

1+2+3+4+…

自然数すべての総和 は、その -次の部分和 が三角数によって与えられる無限級数。これは を無限大に飛ばすとき際限なく増加するため、この級数は(正の無限大に)発散し、通常の意味での「和」を持たない。 一見するとこの級数が意味のある値を持つことは全くないように思われるが、これに数学的に意味のある値を結びつける方法があり、そうして得られた値は複素解析や、物理学における場の量子論、特に弦理論などの分野において応用がある。様々な総和法を用いることで、上記のごとき発散級数にさえ有限な数値を割り当てることができ、特にゼータ関数正規化やラマヌジャン総和法では件の級数に を値として割り当てる。この事実をよく知られた公式 として式に表す。モンスター群のムーンシャイン現象に関するモノグラフではこの等式を「自然科学において最も注目すべき公式の一つ」と評した。.

新しい!!: 1−2+3−4+…と1+2+3+4+… · 続きを見る »

1/4

(4分の1、よんぶんのいち、しぶんのいち)は、0 と 1 の間にある有理数の一つであり、4 の逆数である。十進法の小数表示は 0.25 である。.

新しい!!: 1−2+3−4+…と1/4 · 続きを見る »

18世紀

Jean-Pierre Houëlが描いたバスティーユ襲撃(フランス国立図書館蔵)。 国立マルメゾン城美術館蔵)。 ロンドン・ナショナル・ギャラリー蔵)。 18世紀(じゅうはっせいき)は、西暦1701年から西暦1800年までの100年間を指す世紀。.

新しい!!: 1−2+3−4+…と18世紀 · 続きを見る »

ここにリダイレクトされます:

1 − 2 + 3 − 4 + …1-2+3-4+1-2+3-4+...1-2+3-4+…

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »