ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
無料
ブラウザよりも高速アクセス!
 

1+2+4+8+…

索引 1+2+4+8+…

1 + 2 + 4 + 8 + …は無限級数の一つで、数学において、その項は連続する2の冪である。初項1、公比2の等比数列として特徴付けられる。実数の級数で、無限大に発散する級数として、普通には実数の和を持たないとされる。より広く解釈すると、この級数は ∞ の他の値、即ち −1 に関連付けられる。.

37 関係: 収束半径実数安定不動点代入循環小数係数チェザロ和メビウス変換リーマン球面レオンハルト・オイラー−1ゴッドフレイ・ハロルド・ハーディ冪級数公理等比数列級数線型性総和無限発散級数複素平面解析接続関数 (数学)P進数減法方程式数学整数00.999...11−1+2−6+24−120+…1−2+3−4+…22の冪2の補数

収束半径

収束半径(しゅうそくはんけい、radius of convergence) とは、冪級数が収束する定義域を与える非負量(実数あるいは∞)である。 次の冪級数を考える。 ただし、中心 a や係数 cn は複素数(特に実数)とする。次の条件が成立するとき、r をこの級数の収束半径という。 であるとき、級数は収束し、 であるとき、級数は発散する。 もし、級数が全ての複素数 z に関して収束するならば、収束半径は ∞ となる。.

新しい!!: 1+2+4+8+…と収束半径 · 続きを見る »

実数

数学における実数(じっすう、 nombre réel, reelle Zahl, real number)は、様々な量の連続的な変化を表す数の体系である。実数全体の空間は、途切れのなさにあたる完備性とよばれる位相的な性質を持ち、代数的には加減乗除ができるという体の構造を持っている。幾何学や解析学ではこれらのよい性質を利用して様々な対象が定義され、研究されている。一方でその構成方法に自明でない手続きが含まれるため、実数の空間は数学基礎論の観点からも興味深い性質を持っている。また、自然科学における連続的なものの計測値を表すのに十分な数の体系だとも考えられている。 実数の概念は、その形式的な定義が19世紀に達成される前から数の体系として使われていた。「実数」という名前は複素数の概念が導入された後に「普通の数」を表現する言葉として導入されたものである。.

新しい!!: 1+2+4+8+…と実数 · 続きを見る »

安定

安定(あんてい).

新しい!!: 1+2+4+8+…と安定 · 続きを見る »

不動点

不動点を三つ持つ関数 数学において写像の不動点(ふどうてん)あるいは固定点(こていてん、fixed point, fixpoint)とは、その写像によって自分自身に写される点のことである。.

新しい!!: 1+2+4+8+…と不動点 · 続きを見る »

代入

代入(だいにゅう).

新しい!!: 1+2+4+8+…と代入 · 続きを見る »

循環小数

循環小数(じゅんかんしょうすう、recurring decimal, repeating decimal)とは、ある桁から先で同じ数字の列が無限に繰り返される小数のことである。繰り返される数字の列を循環節という。また、小数第一位から循環がはじまるものを純循環小数(pure recurring decimal)、第二位以降から始まるものを混合循環小数(mixed recurring decimal)といい、混合循環小数は冒頭の有限小数とそれ以降の循環小数の2つに分離される吉田武 『』 東海大学出版会、2010年、14頁。ISBN 978-4-486-01863-6。。.

新しい!!: 1+2+4+8+…と循環小数 · 続きを見る »

係数

係数(けいすう、coefficient)は、多項式の各項(単項式)を構成する因子において、変数(不定元)を除いた、定数等の因子である。例えば、4α+3β+2における、4と3と2である。この例では2がそれであるが、それ自体で項全体となっている項(あるいは、形式的には 1に掛かっている係数)を、特に定数項と呼ぶ。.

新しい!!: 1+2+4+8+…と係数 · 続きを見る »

チェザロ和

解析学におけるチェザロ総和法(チェザロそうわほう、Cesàro summation)とは無限級数に「和」と呼ばれる値を結びつける総和法の一種である。無限級数が通常の意味で収束して値 A を持つならば、その級数はチェザロの意味でも総和可能であり、同じ A をチェザロ和として持つ。チェザロ和の重要性は、収束しない級数のなかにもチェザロ和が矛盾なく定義できるものがありうるという点にある。ただし、たとえば無限大に収束する正項級数などはいかなる場合も有限の値の和を持つことはない。 名称は19世紀のイタリアの数学者アーネスト・チェザロに因む。.

新しい!!: 1+2+4+8+…とチェザロ和 · 続きを見る »

メビウス変換

幾何学における平面上のメビウス変換(メビウスへんかん、Möbius transformation)は、 の形で表される複素一変数 に関する有理函数である。ここで、係数 は を満足する複素定数である。 幾何学的にはメビウス変換は、複素数平面を実二次元球面へ立体射影したものの上で回転と平行移動により各点の位置と向きを変更したものを再度平面に立体射影することによって得られる。これらの変換は「角度」を保ち(「等角性」)、任意の「直線または円」を「直線または円」に写す(「円円対応」)。 メビウス変換は複素射影直線上の射影変換であり、その全体はメビウス群と呼ばれる射影一般線型群 を成す。メビウス群およびその部分群は数学および物理学においてざまざまな応用を持つ。 メビウス変換の名はアウグスト・フェルディナント・メビウスの業績に因むものだが、ほかにも射影変換や一次分数変換(あるいは単に一次変換)などと呼ばれることもある。.

新しい!!: 1+2+4+8+…とメビウス変換 · 続きを見る »

リーマン球面

リーマン球面は、複素平面で包んだ球面(ある形式の立体射影による ― 詳細は下記参照)として視覚化できる。 数学においてリーマン球面(リーマンきゅうめん、Riemann sphere)は、無限遠点を一点追加して複素平面を拡張する一手法であり、ここに無限遠点 は、少なくともある意味で整合的かつ有用である。 19 世紀の数学者ベルンハルト・リーマンから名付けられた。 これはまた、以下の通りにも呼ばれる。.

新しい!!: 1+2+4+8+…とリーマン球面 · 続きを見る »

レオンハルト・オイラー

レオンハルト・オイラー(Leonhard Euler, 1707年4月15日 - 1783年9月18日)は、18世紀の数学者・天文学者(天体物理学者)。 18世紀の数学の中心となり、続く19世紀の厳密化・抽象化時代の礎を築いた 日本数学会編『岩波数学辞典 第4版』、岩波書店、2007年、項目「オイラー」より。ISBN 978-4-00-080309-0 C3541 。スイスのバーゼルに生まれ、現在のロシアのサンクトペテルブルクにて死去した。.

新しい!!: 1+2+4+8+…とレオンハルト・オイラー · 続きを見る »

−1

−1(マイナスいち)は、最大の負の整数であり、整数を小さい順に並べたとき、−2 の次で 0 の前である(0 からマイナス無限大へ数えれば、最初の負の数で、0 の次で −2 の前である)。.

新しい!!: 1+2+4+8+…と−1 · 続きを見る »

ゴッドフレイ・ハロルド・ハーディ

ッドフレイ・ハロルド・ハーディ(Godfrey Harold Hardy, 1877年2月7日 - 1947年12月1日)は、イギリスの数学者。.

新しい!!: 1+2+4+8+…とゴッドフレイ・ハロルド・ハーディ · 続きを見る »

冪級数

数学において、(一変数の)冪級数(べききゅうすう、power series)あるいは整級数(せいきゅうすう、série entière)とは の形の無限級数である。ここで は 番目の項の係数を表し、 は定数である。この級数は通常ある知られた関数のテイラー級数として生じる。 多くの状況において (級数の中心 (center))は である。例えばマクローリン級数を考えるときがそうである。そのような場合には、冪級数は簡単な形 \sum_^\infty a_n x^n.

新しい!!: 1+2+4+8+…と冪級数 · 続きを見る »

公理

公理(こうり、axiom)とは、その他の命題を導きだすための前提として導入される最も基本的な仮定のことである。一つの形式体系における議論の前提として置かれる一連の公理の集まりを (axiomatic system) という 。公理を前提として演繹手続きによって導きだされる命題は定理とよばれる。多くの文脈で「公理」と同じ概念をさすものとして仮定や前提という言葉も並列して用いられている。 公理とは他の結果を導きだすための議論の前提となるべき論理的に定式化された(形式的な)言明であるにすぎず、真実であることが明らかな自明の理が採用されるとは限らない。知の体系の公理化は、いくつかの基本的でよく知られた事柄からその体系の主張が導きだせることを示すためになされることが多い。 なお、ユークリッド原論などの古典的な数学観では、最も自明(絶対的)な前提を公理、それに準じて要請される前提を公準 (postulate) として区別していた。.

新しい!!: 1+2+4+8+…と公理 · 続きを見る »

等比数列

等比数列(とうひすうれつ、または幾何数列(きかすうれつ)、geometric progression, geometric sequence)は、数列で、隣り合う二項の比が項番号によらず一定であるようなものである。その比のことを公比(こうひ、common ratio)という。例えば 4,12,36,108,… という数列 (an) は初項が 4 であり公比が 3 の等比数列である。公比 r は r.

新しい!!: 1+2+4+8+…と等比数列 · 続きを見る »

級数

数学における級数 (きゅうすう、series) とは、ひと口に言えば数や関数など互いに足すことのできる数学的対象の列について考えられる無限項の和のことである。ただし「無限の項の総和」が何を表しているのかということはしばしば解析学の言葉を用いて様々な場合に意味を与える(#級数の収束性の節を参照)ことができるが、そのようなことができない「発散する級数」もあれば、級数自体を新たな形式的対象としてとらえることもある。小さくなっていく実数を項とする級数の収束性については様々な判定条件が与えられている。 級数を表す記法として、和記号 を用いた表現 や三点リーダ を用いた表現 などがある。 有限個の項以外は とすることで有限個の対象の和を表すこともでき、無限項の和であることを特に強調する場合には無限級数とも言う。無限の項の和の形に表された級数が何を表しているかということは一見必ずしも明らかではないため、何らかの意味付けを与えなければならない。最もよく採用される理解の方法は、有限個の項の和が収束する先を無限級数の値とすることである。例えば、 より となる。このほかに、解析接続などの手法により、みかけ上発散している級数に対して のような等式が意味付けされることもある。.

新しい!!: 1+2+4+8+…と級数 · 続きを見る »

線型性

線型性(せんけいせい、英語: linearity)あるいは線型、線形、線状、リニア(せんけい、英語: linear、ラテン語: linearis)とは、直線そのもの、または直線のようにまっすぐな図形やそれに似た性質をもつ対象および、そのような性質を保つ変換などを指して用いられている術語である。対義語は非線型性(英語:Non-Linearity)である。 英語の数学用語のlinear にあてる日本語訳としては、線型が本来の表記であると指摘されることもあるが、他にも線形、線状などといった表記もしばしば用いられている。また一次という表記・表現もしばしば用いられている。というのはlinearは、(多変数の)斉一次函数を指していると考えて間違っていない場合も多いためである。.

新しい!!: 1+2+4+8+…と線型性 · 続きを見る »

総和

数学において、総和(そうわ、summation)とは与えられた数を総じて加えることである。.

新しい!!: 1+2+4+8+…と総和 · 続きを見る »

無限

無限(むげん、infinity、∞)とは、限りの無いことである。 直感的には「限界を持たない」というだけの単純に理解できそうな概念である一方で、直感的には有限な世界しか知りえないと思われる人間にとって、無限というものが一体どういうことであるのかを厳密に理解することは非常に難しい問題を含んでいる。このことから、しばしば哲学、論理学や自然科学などの一部の分野において考察の対象として無限という概念が取り上げられ、そして深い考察が得られている。 本項では、数学などの学問分野において、無限がどのように捉えられ、どのように扱われるのかを記述する。.

新しい!!: 1+2+4+8+…と無限 · 続きを見る »

発散級数

数学において発散級数(はっさんきゅうすう、divergent series)とは、収束しない級数である、つまり、部分和の成す無限列が有限な極限を持たない級数である。 級数が収束するならば、級数の各項の成す数列は必ず 0 に収束する。したがって、0 に収束しないような数列を項に持つ級数はいずれも発散する。しかし、級数の収束性はそれよりも強い条件で、級数の項が 0 に収束するからといって必ずしもその級数自身は収束しない。最も簡単な反例として、調和級数 が挙げられる。調和級数の発散性は、中世の数学者ニコル・オレームによって示された。 数学の特別な文脈では、部分和の列が発散するようなある種の列について、その和として意味のある値を割り当てることができる。総和法 (summability method, summation method) とは、級数の部分和の列全体の成す集合から「和の値」の集合への部分写像である。例えば、チェザロ総和法ではグランディの発散級数 に 1/2 を値として割り当てる。チェザロ総和法は平均化法 (averaging method) の一種で、部分和の列の算術平均をとることに基づいている。他の方法としては、関連する級数の解析接続として和を定める方法などがある。物理学では、非常に多種多様な総和法が用いられる(詳細はの項を参照)。.

新しい!!: 1+2+4+8+…と発散級数 · 続きを見る »

複素平面

複素平面 数学において、数平面(すうへいめん、Zahlenebene)あるいは複素数­平面(ふくそすう­へいめん、Komplexe Zahlenebene, complex plane)は、数直線あるいは実数直線 (real line) を実軸 (real axis) として含む。 が実数であるとき、複素数 を単に実数の対とみなせば、平面の直交座標 の点に対応付けることができる。xy-平面上の y-軸は純虚数の全体に対応し、虚軸 (imaginary axis) と呼ばれる。-平面上の点 に複素数 を対応させるとき、-平面とも言う。 1811年頃にガウスによって導入されたため、ガウス平面 (Gaussian plane) とも呼ばれる。一方、それに先立つ1806年に も同様の手法を用いたため、アルガン図 (Argand Diagram) とも呼ばれている。さらに、それ以前の1797年の の書簡にも登場している。このように複素数の幾何的表示はガウス以前にも知られていたが、今日用いられているような形式で複素平面を論じたのはガウスである。三者の名前をとってガウス・アルガン平面、ガウス・ウェッセル平面などとも言われる。 英語名称 complex plane を「直訳」して複素平面と呼ぶことも少なくないが、ここにいう complex は「複素数上の—」という意味ではなく複素数そのものを意味している(複素数の全体を "the complexes" と呼んだり、" is a complex" などのような用例のあることを想起せよ)。したがって、語義に従った complex plane の直訳は「複素数平面」と考えるべきである(実数全体の成す real line についても同様であり、これは通例「実数直線」と訳され、実直線は多少異なる意味に用いられる)。.

新しい!!: 1+2+4+8+…と複素平面 · 続きを見る »

解析接続

解析学において、解析接続 (かいせきせつぞく、analytic continuation, analytic prolongation) とはリーマン球面 C 上の領域で定義された有理型関数に対して定義域の拡張を行う手法の一つ、あるいは、その拡張によって得られた関数の事である。.

新しい!!: 1+2+4+8+…と解析接続 · 続きを見る »

関数 (数学)

数学における関数(かんすう、、、、、函数とも)とは、かつては、ある変数に依存して決まる値あるいはその対応を表す式の事であった。この言葉はライプニッツによって導入された。その後定義が一般化されて行き、現代的には数の集合に値をとる写像の一種であると理解される。.

新しい!!: 1+2+4+8+…と関数 (数学) · 続きを見る »

P進数

p 進数(ピーしんすう、p-adic number)とは、1897年にクルト・ヘンゼルによって導入された、数の体系の一つである。文脈によっては、その体系の個々の数を指して p 進数と呼ぶこともある。有理数の体系を実数や複素数の体系に拡張するのとは別の方法で、各素数 p に対して p 進数の体系が構成される。それらは有理数のつくる空間の局所的な姿を記述していると考えられ、数学の中でも特に数論において重要な役割を果たす。数学のみならず、素粒子物理学の理論などで使われることもある(例えば ''p'' 進量子力学を参照)。 「p 進数」とは「2進数」や「3進数」の総称に過ぎないので、文字 p がすでに他の場所で用いられている場合、q 進数や l 進数などと表現されることもある。 なお、自然数や実数を 0 と 1 で表現する方法(2進法)やその結果得られる記号列(2進列)も「2進数」と呼ぶ場合があるが、本項の意味での「2進数」とは異なる。.

新しい!!: 1+2+4+8+…とP進数 · 続きを見る »

減法

減法(げんぽう、subtraction)は、一方から一部として他方を取り去ることにより両者の間の差分を求める二項演算で、算術における四則演算の 1 つ。計算することの側面を強調して引き算(ひきざん)、減算(げんさん、げんざん)などとも言う。また、引き算を行うことを「( から) を引く」 と表現する。引く数を減数(げんすう、subtrahend)と呼び引かれる数を被減数(ひげんすう、minuend)と呼ぶ。また、減算の結果は差(さ、difference)と呼ばれる。 抽象代数学において減法は多くの場合、加法の逆演算として定式化されて加法に統合される。たとえば自然数の間の減法は、整数への数の拡張により、数を引くことと負の数を加えることとが同一視されて、減法は加法の一部となる。またこのとき、常に大きいものから小さいものを減算することしかできない自然数の体系に対して、整数という体系では減算が自由に行えるようになる(整数の全体は、逆演算として減法を内包した加法に関してアーベル群になる)。.

新しい!!: 1+2+4+8+…と減法 · 続きを見る »

方程式

14''x'' + 15.

新しい!!: 1+2+4+8+…と方程式 · 続きを見る »

数学

数学(すうがく、μαθηματικά, mathematica, math)は、量(数)、構造、空間、変化について研究する学問である。数学の範囲と定義については、数学者や哲学者の間で様々な見解がある。.

新しい!!: 1+2+4+8+…と数学 · 続きを見る »

整数

数学における整数(せいすう、integer, whole number, Ganze Zahl, nombre entier, número entero)は、0 とそれに 1 ずつ加えていって得られる自然数 (1, 2, 3, 4, …) および 1 ずつ引いていって得られる数 (−1, −2, −3, −4, …) の総称である。 整数は数直線上の格子点として視覚化される 整数の全体からなる集合は普通、太字の Z または黒板太字の \mathbb Z で表す。これはドイツ語 Zahlen(「数」の意・複数形)に由来する。 抽象代数学、特に代数的整数論では、しばしば「代数体の整数環」の元という意味で代数的整数あるいは「整数」という言葉を用いる。有理数全体の成す体はそれ自身が代数体の最も簡単な例であり、有理数体の代数体としての整数環すなわち、「有理数の中で整なもの」の全体の成す環は、本項でいう意味での整数全体の成す環である。一般の「整数」との区別のためにここでいう意味の整数を有理整数 (rational integer) と呼ぶことがある接頭辞「有理(的)」(rational) はそもそも「整数比」であるという意味なので、この呼称は自己循環的にもみえる。しかし、有理整数と呼ぶ場合の「有理」は「有理数の中で」という程度の意味の単なる符牒であって、「整数比」という本来の意味合いに拘るのは徒労である。。.

新しい!!: 1+2+4+8+…と整数 · 続きを見る »

0

0 |- | Divisors || all numbers |- | Roman numeral || N/A |- | Arabic || style.

新しい!!: 1+2+4+8+…と0 · 続きを見る »

0.999...

無限に 9 の続く無限小数 数学における循環十進小数 ( の前の 9 の個数は多少増減させて のようにも書く。あるいは他にも,, など多様な表記がある)は、実数として数の「イチ」であると示すことができる。言葉を変えれば、記号 "0.999⋯" と "1" は同じ数を表している。これが等しいことの証明は、実数論の展開、背景にある仮定、歴史的文脈、対象となる聞き手などに合ったレベルで、各種段階のが相応に考慮された、多様な定式化がある例えば、最初の節に挙げる「代数的証明」は「ただしい」証明だが、その証明の正当性は後の節に記す解析学的手法である極限の概念によって保証される。同様にそれら解析学的証明を「ただしい」証明たらしめているのは実数の特質に他ならない。しかし普通は、実数の公理にまでいちいち遡らずにいくつかの性質を「認めて」、そこで切り上げるのである。もちろん実数の代替となる体系において、実数と異なる性質に基づけば、それら「証明」はそのどこかが崩され、「まちがった」証明となり得る。。 任意の でない有限小数(を末尾に無限個の 0 を付けて無限小数と見たもの)は、それと値が等しい、末尾に無限個の 9 が連なる双子の表示(例えば と)を持つ。ふつうは有限小数表示が好まれることで、それが一意的な表示であるとの誤解に繋がり易い。同じ現象は、任意の別の底に関する位取り記数法や、あるいは同様の実数の表示法でも発生する。 と の等価性は、実数の体系(これは解析学ではもっとも一般的に用いられる体系である)に 0 でない無限小が存在しないことと深く関係している。一方、超実数の体系のように 0 でない無限小を含む別の数体系もある。そのような体系の大半は、標準的な解釈のもとで式 の値は に等しくなるが、一部の体系においては記号 "" に別の解釈を与えて よりも無限小だけ小さいようにすることができる。 等式 は数学者に長く受け入れられ、一般の数学教育の一部であったにも拘らず、これを十分ものと見做して、疑念や拒絶反応を示す学徒もいる。このような懐疑論は、「この等式を彼らに納得させることがいかに難しいか」が数学教育の様々な研究の主題となることに正当性を与える程度に当たり前に存在している。.

新しい!!: 1+2+4+8+…と0.999... · 続きを見る »

1

一」の筆順 1(一、いち、ひと、ひとつ)は、最小の正の整数である。0 を自然数に含めない流儀では、最小の自然数とも言える。整数の通常の順序において、0 の次で 2 の前の整数である。1 はまた、実数を位取り記数法で記述するための数字の一つでもある。 「無」を意味する 0 に対して、1 は有・存在を示す最原初的な記号なので、物事を測る基準単位、つまり数や順序を数える際の初めである。英語の序数詞では、1st、first となる。ラテン語では unus(ウーヌス)で、接頭辞 uni- はこれに由来する。.

新しい!!: 1+2+4+8+…と1 · 続きを見る »

1−1+2−6+24−120+…

1 − 1 + 2 − 6 + 24 − 120 + … は発散級数のひとつ。階乗に関する交項級数であり、総和の記号を用いて と表される。 この級数は通常の意味での和を持たないが、オイラーは微分方程式を用いる適当な形式総和法によりこの級数に有限な値を割り当てた。 この発散級数の値を知る簡単な方法の一つは、ボレル和 を考えることである(式の両辺は通常の意味でともに無限大であり、ここでの等号はこのままでは正当化されない形式的な等号であることに注意)。ここで仮に無限和と積分とが(記号的に)交換できるものとすれば という式が得られることになるが、右辺の角括弧内の総和は (0 &le) x < 1 のとき収束して 1/(1 + x) に等しい。さらに仮定を重ねて(1 ≤ x のときも収束性を無視して)角括弧内の総和を 1/(1 + x) に書き換えてよいものとすると、全体の積分が有限値に収束するものになり、ボレルの意味で と書くことが正当化できる(但し、e は自然対数の底、E_1 (z)は指数積分である)。.

新しい!!: 1+2+4+8+…と1−1+2−6+24−120+… · 続きを見る »

1−2+3−4+…

1−2+3−4+… の部分和が発散する様子の模式図 1−2+3−4+… は無限級数の一つで、項番号と同じ自然数が各項に現れる交項級数として以下の式で表される。 その部分和は 1, −1, 2, −2, 3, −3, … と一定の値に近づくことはないので、この級数は発散するというのが一般的な解釈である。しかし計算方法によってはこの級数が収束すると考えることもでき、その場合の収束値は 1/4 である。これは18世紀にレオンハルト・オイラーによって発見された。その後エミール・ボレルらによって厳密な研究が行われ、その他の部分和が収束しない級数(1−1+1−1+… など)の収束値についても考察がなされた。.

新しい!!: 1+2+4+8+…と1−2+3−4+… · 続きを見る »

2

二」の筆順 2(二、に、じ、ふた、ふたつ)は、自然数、また整数において、1 の次で 3 の前の数である。英語の序数詞では、2nd、second となる。ラテン語では duo(ドゥオ)。.

新しい!!: 1+2+4+8+…と2 · 続きを見る »

2の冪

2の冪(にのべき)は、適当な自然数 n を選べば、2 の n 乗 2n の形に表せる自然数の総称である。平たく言うと2の累乗数(にのるいじょうすう)である。.

新しい!!: 1+2+4+8+…と2の冪 · 続きを見る »

2の補数

2の補数(にのほすう)は、2、ないし2のべき乗の補数、またそれによる負の値の表現法である。特に二進法で使われる。(数学的あるいは理論的には、三進法における減基数による補数、すなわち による補数も「2の補数」であるが、まず使われることはない) コンピュータの固定長整数型や、固定小数点数で、負の値を表現するためや加算器で減算をするために使われる。 頭の部分の1個以上の0を含む(正規化されていない)ある桁数の二進法で表現された数があるとき、その最上位ビット (MSB) よりひとつ上のビットが1で、残りが全て0であるような値(8ビットの整数であれば、100000000_.

新しい!!: 1+2+4+8+…と2の補数 · 続きを見る »

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »