ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
無料
ブラウザよりも高速アクセス!
 

1+1

索引 1+1

1+1(いちたすいち)は、加法の数式のひとつである。しばしば、最も単純な計算問題として言及され、様々な比喩に用いられる。計算結果が 2 とされる初等的、数学的な意味の他にも、抽象的な意味を持ち得る。.

41 関係: 加法基数詞偶数十進法単位元奇数乗法序数詞二項演算ペアノの公理バートランド・ラッセルリットルプリンキピア・マテマティカニム初等教育命題アルフレッド・ノース・ホワイトヘッドエウクレイデス公理元 (数学)符号理論等式環 (数学)相乗効果遠山啓証明論理学関数 (数学)自然数集合MKS単位系抽象代数学暗号理論排他的論理和有限体数学基礎論数式数理論理学整数の合同2

加法

加法(かほう、addition, summation)とは、数を合わせることを意味する二項演算あるいは多項演算で、四則演算のひとつ。足し算(たしざん)、加算(かさん)、あるいは寄せ算(よせざん)とも呼ばれる。また、加法の演算結果を和(わ、)という。記号は「+」。 自然数の加法は、しばしば物の個数を加え合わせることに喩えられる。また数概念の拡張にしたがって、別の意味を持つ加法を考えることができる。たとえば実数の加法は、もはや自然数の加法のように物の個数を喩えに出すことはできないが、曲線の長さなど別の対象物を見出すことができる。 減法とは互いに逆の関係にあり、また例えば、負の数の加法として減法が捉えられるなど、加法と減法の関連は深い。これは代数学において加法群の概念として抽象化される。 無限個の数を加えること(総和法)については総和、級数、極限、ε–δ 論法などを参照。.

新しい!!: 1+1と加法 · 続きを見る »

基数詞

基数詞(きすうし)とは物事の数を表す数詞である。これに対し物事の順序を表す数詞を序数詞と呼ぶ。.

新しい!!: 1+1と基数詞 · 続きを見る »

偶数

偶数(ぐうすう、even number) とは、 を約数に持つ整数、すなわち で割り切れる整数のことをいう。逆に で割り切れない整数のことは、奇数という。 具体的な偶数の例として などが挙げられる。これらはそれぞれ に等しいため、 で割っても余りが生じず、 で割り切ることができる。 より派生して、 で割り切れるが では割り切れない整数を単偶数または半偶数という。これに対して、 で割り切れる整数を複偶数 または全偶数という。 偶数と奇数は、偶数全体、奇数全体をそれぞれ 1 つの元と見て、2 つの元からなる有限体の例を与える。.

新しい!!: 1+1と偶数 · 続きを見る »

十進法

十進法(じっしんほう、decimal system)とは、10 を底(てい)とし、底およびその冪を基準にして数を表す方法である。.

新しい!!: 1+1と十進法 · 続きを見る »

単位元

数学、とくに抽象代数学において、単位元(たんいげん, )あるいは中立元(ちゅうりつげん, )は、二項演算を備えた集合の特別な元で、ほかのどの元もその二項演算による単位元との結合の影響を受けない。.

新しい!!: 1+1と単位元 · 続きを見る »

奇数

奇数(きすう、 odd number)とは、2で割り切れない整数のことをいう。一方、2で割り切れる整数のことは、偶数という。−15, −3, 1, 7, 19 などは全て奇数である。 10進法では、一の位が 1, 3, 5, 7, 9 である数は奇数である。2進法では、20 の位(すなわち一の位)が 1 ならば奇数で、0 ならば偶数である。一般に 2n 進法(n は自然数)において、ある数が偶数であるか奇数であるかは、一の位(n0 の位)を見るだけで判別できる。 偶数と奇数は、位数が2の体の例を与える。.

新しい!!: 1+1と奇数 · 続きを見る »

乗法

算術における乗法 (じょうほう、multiplication) は、算術の四則と呼ばれるものの一つで、整数では、一方の数 (被乗数、ひじょうすう、multiplicand) に対して他方の数 (乗数、じょうすう、multiplier) の回数だけ繰り返し和をとる(これを掛けるまたは乗じるという。)ことにより定義できる演算である。掛け算(かけざん)、乗算(じょうざん)とも呼ばれる。代数学においては、変数の前の乗数(例えば 3y の 3)は係数(けいすう、coefficient)と呼ばれる。 逆の演算として除法をもつ。乗法の結果を積 (せき、product) と呼ぶ。 乗法は、有理数、実数、複素数に対しても拡張定義される。また、抽象代数学においては、一般に可換とは限らない二項演算に対して、それを乗法、積などと呼称する(演算が可換である場合はしばしば加法、和などと呼ぶ)。.

新しい!!: 1+1と乗法 · 続きを見る »

序数詞

序数詞(じょすうし)、順序数詞(じゅんじょすうし)とは物事の順序・順番(序数)を表す数詞である。これに対し、物事の数量を表す数詞は基数詞と呼ばれる。同音の助数詞との混同に注意。欧州の言語において序数詞は、日付(日)や世紀、分数の分母、また1世、2世、3世…といった同名の人物の世代数などにも用いられる。.

新しい!!: 1+1と序数詞 · 続きを見る »

二項演算

数学において、二項演算(にこうえんざん、binary operation)は、数の四則演算(加減乗除)などの 「二つの数から新たな数を決定する規則」 を一般化した概念である。二項算法(にこうさんぽう)、結合などともいう。.

新しい!!: 1+1と二項演算 · 続きを見る »

ペアノの公理

ペアノの公理(ペアノのこうり、Peano axioms) とは、自然数全体を公理化したものである。1891年に、ジュゼッペ・ペアノによって定義された。.

新しい!!: 1+1とペアノの公理 · 続きを見る »

バートランド・ラッセル

3代ラッセル伯爵、バートランド・アーサー・ウィリアム・ラッセル(Bertrand Arthur William Russell, 3rd Earl Russell, OM, FRS、1872年5月18日 - 1970年2月2日)は、イギリスの哲学者、論理学者、数学者であり、社会批評家、政治活動家である。ラッセル伯爵家の貴族であり、イギリスの首相を2度務めた初代ラッセル伯ジョン・ラッセルは祖父にあたる。名付け親は同じくイギリスの哲学者ジョン・スチュアート・ミル。ミルはラッセル誕生の翌年に死去したが、その著作はラッセルの生涯に大きな影響を与えた。生涯に4度結婚し、最後の結婚は80歳のときであった。1950年にノーベル文学賞を受賞している。.

新しい!!: 1+1とバートランド・ラッセル · 続きを見る »

リットル

リットル(litre, litre, liter, 記号: L, l)は体積の単位である。メートル法の古い単位であって今日のSI単位ではないが、「SI単位と併用される非SI単位」の一つである。 リットルの定義は1901年と1964年に2度変更された(後述)が、現在の定義は 立方メートル (m).

新しい!!: 1+1とリットル · 続きを見る »

プリンキピア・マテマティカ

短縮版『プリンキピア・マテマティカ 56節まで』の表紙 『プリンキピア・マテマティカ』(Principia Mathematica:数学原理)は、アルフレッド・ノース・ホワイトヘッドとバートランド・ラッセルによって書かれ、1910年から1913年に出版された、数学の基礎に関する全3巻からなる著作である。それは、記号論理学において、明示された公理の一組と推論規則から数学的真理すべてを得る試みである。『プリンキピア』のための主なインスピレーションと動機の1つは論理学に関するフレーゲの初期の仕事で、それがパラドックスをもたらすことをラッセルが発見したのである。 プリンキピアは、数学論理と哲学においてアリストテレスの『オルガノン』以来もっとも重要で独創的な仕事の一つと、広く専門家に考えられている。 モダン・ライブラリーは、この本を20世紀のノンフィクション書籍上位100のリスト(Modern Library 100 Best Nonfiction)の23位に位置づけた。.

新しい!!: 1+1とプリンキピア・マテマティカ · 続きを見る »

ニム

ニム (nim) は、2人で行うレクリエーション数学ゲームの1つである。ルーツは古代中国からあるとされ、16世紀初めの西欧で基本ルールが完成したが、名前については、一般的に1901年にハーバード大学のチャールズ・L.バウトン (Charles L. Bouton) によって名付けられたとされる。 このゲームの必勝法は、組合せ論による。組合せ論的には先手と後手どちらが勝つか、勝ちが保証されるためにはどのようにコインを取ればよいか、その勝利の戦略を決めることにある。.

新しい!!: 1+1とニム · 続きを見る »

初等教育

初等教育(しょとうきょういく, Primary education)は、通常5-7歳から開始される段階の教育であり、ISCEDではレベル1に分類され、大抵6年間である。 これはISCEDレベル0の就学前教育(幼稚園や認定こども園など)の後に続く過程であり、言語の読解・綴字(識字)、基礎計算などの人間の社会生活能力の育成が重要視され、大部分の国で義務教育・無償教育となっている。 国際連合のミレニアム開発目標においては、「(2A) 2015年までに、全ての子どもが男女の区別なく初等教育の全課程を修了できるようにする」と合意されている。.

新しい!!: 1+1と初等教育 · 続きを見る »

命題

命題(めいだい、proposition)とは、論理学において判断を言語で表したもので、真または偽という性質をもつもの。また数学で、真偽の判断の対象となる文章または式。定理または問題のこと。西周による訳語の一つ。 厳密な意味での命題の存在は、「意味」の存在と同様に、疑問を投げかける哲学者もいる。また、「意味」の概念が許容される場合にあっても、その本質は何であるかということにはなお議論のあるところである。古い文献では、語の集まりあるいはその語の集まりの表す「意味」という意味で命題という術語を用いているかどうかということが、つねに十分に明らかにされているわけではなかった。 現在では、論争や存在論的な含みを持つことを避けるため、ある解釈の下で(真か偽のいずれであるかという)真理の担い手となる記号列自体について述べる時は、「命題」という代わりに「文 (sentence)」という術語を用いる。ストローソンは「言明 ("statement")」 という術語を用いることを提唱した。.

新しい!!: 1+1と命題 · 続きを見る »

アルフレッド・ノース・ホワイトヘッド

アルフレッド・ノース・ホワイトヘッド (Alfred North Whitehead、1861年2月15日 - 1947年12月30日)は、イギリスの数学者、哲学者である。論理学、科学哲学、数学、高等教育論、宗教哲学などに功績を残す。ケンブリッジ大学、ユニバーシティ・カレッジ・ロンドン、インペリアル・カレッジ・ロンドン、ハーバード大学の各大学において、教鞭をとる。哲学者としての彼の業績は、ハーバード大学に招聘されてからが主体であり、その時既に63歳であった。.

新しい!!: 1+1とアルフレッド・ノース・ホワイトヘッド · 続きを見る »

エウクレイデス

ラファエロの壁画「アテナイの学堂」に画かれたエウクレイデス アレクサンドリアのエウクレイデス(、、(ユークリッド)、紀元前3世紀? - )は、古代ギリシアの数学者、天文学者とされる。数学史上最も重要な著作の1つ『原論』(ユークリッド原論)の著者であり、「幾何学の父」と称される。 プトレマイオス1世治世下(紀元前323年-283年)のアレクサンドリアで活動した。『原論』は19世紀末から20世紀初頭まで数学(特に幾何学)の教科書として使われ続けた。線の定義について、「線は幅のない長さである」、「線の端は点である」など述べられている。基本的にその中で今日ユークリッド幾何学と呼ばれている体系が少数の公理系から構築されている。エウクレイデスは他に光学、透視図法、円錐曲線論、球面天文学、誤謬推理論、図形分割論、天秤などについても著述を残したとされている。 なお、エウクレイデスという名はギリシア語で「よき栄光」を意味する。その実在を疑う説もあり、その説によると『原論』は複数人の共著であり、エウクレイデスは共同筆名とされる。 確実に言えることは、彼が古代の卓越した数学者で、アレクサンドリアで数学を教えていたこと、またそこで数学の一派をなしたことである。ユークリッド幾何学の祖で、原論では平面・立体幾何学、整数論、無理数論などの当時の数学が公理的方法によって組み立てられているが、これは古代ギリシア数学の一つの成果として受け止められている。.

新しい!!: 1+1とエウクレイデス · 続きを見る »

公理

公理(こうり、axiom)とは、その他の命題を導きだすための前提として導入される最も基本的な仮定のことである。一つの形式体系における議論の前提として置かれる一連の公理の集まりを (axiomatic system) という 。公理を前提として演繹手続きによって導きだされる命題は定理とよばれる。多くの文脈で「公理」と同じ概念をさすものとして仮定や前提という言葉も並列して用いられている。 公理とは他の結果を導きだすための議論の前提となるべき論理的に定式化された(形式的な)言明であるにすぎず、真実であることが明らかな自明の理が採用されるとは限らない。知の体系の公理化は、いくつかの基本的でよく知られた事柄からその体系の主張が導きだせることを示すためになされることが多い。 なお、ユークリッド原論などの古典的な数学観では、最も自明(絶対的)な前提を公理、それに準じて要請される前提を公準 (postulate) として区別していた。.

新しい!!: 1+1と公理 · 続きを見る »

元 (数学)

数学において元(げん、element)とは、集合を構成する個々の数学的対象のことである。ジュゼッペ・ペアノの導入した記法に従えば、対象 が集合 の元であることを と書き表す。このとき対象 が集合 に属する(ぞくする、membership)、あるいは集合 は対象 を含むとも言う。 「属する」という二項関係は、数学的対象と集合(あるいは一般にクラス)との間に定まる非対称な関係(帰属関係)である。外延性の公理により、集合はそれに属する全ての数学的対象を指定することで特徴づけられる。 通常用いられる においては基礎の公理が述べるところによって帰属関係は整礎、すなわち任意の集合は自身を元として含むことはない(帰属関係は反対称関係である)。しかし、基礎の公理の代わりにを置くではそのような制約を受けないが存在し得る。 帰属関係は推移的でない。これは集合の包含関係がそうであることと対照的である。.

新しい!!: 1+1と元 (数学) · 続きを見る »

符号理論

号理論(ふごうりろん、Coding theory)は、情報を符号化して通信を行う際の効率と信頼性についての理論である。符号は、データ圧縮・暗号化・誤り訂正・ネットワーキングのために使用される。符号理論は、効率的で信頼できるデータ伝送方法を設計するために、情報理論・電気工学・数学・言語学・計算機科学などの様々な分野で研究されている。通常、符号理論には、冗長性の除去と、送信されたデータの誤りの検出・訂正が含まれる。 符号化は、以下の4種類に分けられる。.

新しい!!: 1+1と符号理論 · 続きを見る »

等式

等式(とうしき、equation)とは、二つの対象の等価性・相等関係 (equality) を表す数式のことである。.

新しい!!: 1+1と等式 · 続きを見る »

環 (数学)

数学における環(かん、ring)は、台集合に「加法」(和)および「乗法」(積)と呼ばれる二種類の二項演算を備えた代数系になっており、最もよく知られた環の例は、整数全体の成す集合に自然な加法と乗法を考えたものである(これは乗法が可換だから可換環の例でもある)。ただし、それが環と呼ばれるためには、環の公理として、加法は可換で、加法と乗法はともに結合的であって、乗法は加法の上に分配的で、各元は加法逆元をもち、加法単位元が存在すること、が全て要求される。従って、台集合は加法のもと「加法群」と呼ばれるアーベル群を成し、乗法のもと「乗法半群」と呼ばれる半群であって、乗法は加法に対して分配的であり、またしばしば乗法単位元を持つ乗法に関しては半群となることのみを課す(乗法単位元の存在を要求しない)こともある。定義に関する注意節を参照。なお、よく用いられる環の定義としていくつか流儀の異なるものが存在するが、それについては後述する。 環について研究する数学の分野は環論として知られる。環論学者が研究するのは(整数環や多項式環などの)よく知られた数学的構造やもっと他の環論の公理を満足する多くの未だよく知られていない数学的構造のいずれにも共通する性質についてである。環という構造のもつ遍在性は、数学の様々な分野において同時多発的に行われた「代数化」の動きの中心原理として働くことになった。 また、環論は基本的な物理法則(の根底にある特殊相対性)や物質化学における対称現象の理解にも寄与する。 環の概念は、1880年代のデデキントに始まる、フェルマーの最終定理に対する証明の試みの中で形成されていった。他分野(主に数論)からの寄与もあって、環の概念は一般化されていき、1920年代のうちにエミー・ネーター、ヴォルフガング・クルルらによって確立される。活発に研究が行われている数学の分野としての現代的な環論では、独特の方法論で環を研究している。すなわち、環を調べるために様々な概念を導入して、環をより小さなよく分かっている断片に分解する(イデアルをつかって剰余環を作り、単純環に帰着するなど)。こういった抽象的な性質に加えて、環論では可換環と非可換環を様々な点で分けて考える(前者は代数的数論や代数幾何学の範疇に属する)。特に豊かな理論が展開された特別な種類の可換環として、可換体があり、独自に体論と呼ばれる分野が形成されている。これに対応する非可換環の理論として、非可換可除環(斜体)が盛んに研究されている。なお、1980年代にアラン・コンヌによって非可換環と幾何学の間の奇妙な関連性が指摘されて以来、非可換幾何学が環論の分野として活発になってきている。.

新しい!!: 1+1と環 (数学) · 続きを見る »

相乗効果

乗効果(そうじょうこうか、シナジー、synergy)とは、ある要素が他の要素と合わさる事によって単体で得られる以上の結果を上げること。反義語は相殺、中和。 相乗効果により、全体の最適化、効率化が発揮される。自然、経済、社会、など様々な分野で、この効果は測される。主によい意味として使われる為、事故や災害では使われることはない。.

新しい!!: 1+1と相乗効果 · 続きを見る »

遠山啓

遠山 啓(とおやま ひらく、1909年8月21日 - 1979年9月11日)は、熊本県下益城郡(現・宇城市)出身の日本の数学者。数学教育の分野でよく知られる。.

新しい!!: 1+1と遠山啓 · 続きを見る »

証明

証明(しょうめい)とは、ある事柄が真理もしくは事実であることを明らかにすること。また、その内容。.

新しい!!: 1+1と証明 · 続きを見る »

論理学

論理学(ろんりがく、)とは、「論理」を成り立たせる論証の構成やその体系を研究する学問である。.

新しい!!: 1+1と論理学 · 続きを見る »

関数 (数学)

数学における関数(かんすう、、、、、函数とも)とは、かつては、ある変数に依存して決まる値あるいはその対応を表す式の事であった。この言葉はライプニッツによって導入された。その後定義が一般化されて行き、現代的には数の集合に値をとる写像の一種であると理解される。.

新しい!!: 1+1と関数 (数学) · 続きを見る »

この記事では量(りょう、)について解説する。.

新しい!!: 1+1と量 · 続きを見る »

自然数

自然数(しぜんすう、natural number)とは、個数、もしくは順番を表す一群の数のことである。集合論においては、自然数は物の個数を数える基数のうちで有限のものであると考えることもできるし、物の並べ方を示す順序数のうちで有限のものであると考えることもできる。 自然数を 1, 2, 3, … とする流儀と、0, 1, 2, 3, … とする流儀があり、前者は数論などでよく使われ、後者は集合論、論理学などでよく使われる(詳しくは自然数の歴史と零の地位の節を参照)。いずれにしても、0 を自然数に含めるかどうかが問題になるときは、その旨を明記する必要がある。自然数の代わりに非負整数または正整数と言い換えることによりこの問題を避けることもある。 数学の基礎付けにおいては、自然数の間の加法についての形式的な逆元を考えることによって整数を定義する。正の整数ないしは負でない整数を自然数と同一視し、自然数を整数の一部として取扱うことができる。自然数と同様に整数の全体も可算無限集合である。 なお、文脈によっては、その一群に属する個々の数(例えば 3 や 18)を指して自然数ということもある。.

新しい!!: 1+1と自然数 · 続きを見る »

集合

数学における集合 (しゅうごう、set, ensemble, Menge) とは、大雑把に言えばいくつかの「もの」からなる「集まり」である。集合を構成する個々の「もの」のことを元 (げん、; 要素) という。 集合は、集合論のみならず現代数学全体における最も基本的な概念の一つであり、現代数学のほとんどが集合と写像の言葉で書かれていると言ってよい。 慣例的に、ある種の集合が系 (けい、) や族 (ぞく、) などと呼ばれることもある。実際には、これらの呼び名に本質的な違いはないが細かなニュアンスの違いを含むと考えられている。たとえば、方程式系(「相互に連立する」方程式の集合)、集合族(「一定の規則に基づく」集合の集合)、加法族(「加法的な性質を持つ」集合族)など。.

新しい!!: 1+1と集合 · 続きを見る »

MKS単位系

MKS単位系(エムケイエス たんいけい)とは、長さの単位メートル(metre; m)・質量の単位キログラム(kilogram; kg)・時間の単位秒(second; s)を基本単位とする、一貫性のある単位系である。 メートル法は、単位名称はメートル・グラム・秒を基準にしており、原器はメートル・キログラムを基準としているが、単位系の基礎となる基本単位は、理論上はそれらと無関係に決めることができる。MKS単位系はそうして選ばれた単位系の1つで、他に、もう1つの有力な単位系としてCGS単位系(C: centimetre G: gram S: second)、マイナーな単位系としてMTS単位系(M: metre T: ton S:second)があった。 厳密には、MKS単位系は力学の単位のみを含む。電磁気学を扱うには、電流の単位アンペア(ampere; A)を基本単位に加えたMKSA単位系とする。しかし、MKSA単位系を含め、広い意味でMKS単位系ということもある。MKSAにさらに3つの基本単位を加えたのが国際単位系 (SI) である。MKSはSIの部分集合であり、SIのうち力学の単位はMKSと共通である。.

新しい!!: 1+1とMKS単位系 · 続きを見る »

抽象代数学

抽象代数学 (ちゅうしょうだいすうがく、abstract algebra) とは、群、環、体、加群、ベクトル空間や線型環のように公理的に定義される代数的構造に関する数学の研究の総称である。.

新しい!!: 1+1と抽象代数学 · 続きを見る »

暗号理論

暗号理論(あんごうりろん)の記事では暗号、特に暗号学に関係する理論について扱う。:Category:暗号技術も参照。.

新しい!!: 1+1と暗号理論 · 続きを見る »

排他的論理和

ベン図による排他的論理和P \veebar Q 排他的論理和(はいたてきろんりわ、)とは、ブール論理や古典論理、ビット演算などにおいて、2つの入力のどちらか片方が真でもう片方が偽の時には結果が真となり、両方とも真あるいは両方とも偽の時は偽となる演算(論理演算)である。XOR、EOR、EX-OR(エクスオア、エックスオア、エクソア)などと略称される。.

新しい!!: 1+1と排他的論理和 · 続きを見る »

有限体

有限体(ゆうげんたい、英語:finite field)とは、代数学において、有限個の元からなる体、すなわち四則演算が定義され閉じている有限集合のことである。主に計算機関連の分野においては、発見者であるエヴァリスト・ガロアにちなんでガロア体あるいはガロア域(ガロアいき、Galois field)などとも呼ぶ。 有限体においては、体の定義における乗法の可換性についての条件の有無は問題にはならない。実際、ウェダーバーンの小定理と呼ばれる以下の定理 が成り立つことが知られている。別な言い方をすれば、有限体において乗法の可換性は、体の有限性から導かれるということである。.

新しい!!: 1+1と有限体 · 続きを見る »

数学基礎論

数学基礎論(すうがくきそろん、英語:)は、数学の一分野。他の分野が整数・実数・図形・関数などを取り扱うのに対し、数学自体を対象とする。.

新しい!!: 1+1と数学基礎論 · 続きを見る »

数式

数式(すうしき、)は、数・演算記号・不定元などの数学的な文字・記号(および約物)が一定の規則にのっとって結合された、文字列である。 一般に数式には、その値 が定められており、数式はその値を表現すると考えられている。数式の値の評価 は、その数式に用いられる記号の定義あるいは値によって決まる。すなわち、数式はそれが現れる文脈に完全に依存した形で決まる。.

新しい!!: 1+1と数式 · 続きを見る »

数理論理学

数理論理学(mathematische Logik、mathematical logic)は、論理学(形式論理学)の数学への応用の探求ないしは論理学の数学的な解析を主たる目的とする、数学の関連分野である。局所的には数理論理学は超数学、数学基礎論、理論計算機科学などと密接に関係している。数理論理学の共通な課題としては形式体系の表現力や形式証明系の演繹の能力の研究が含まれる。 数理論理学はしばしば集合論、モデル理論、再帰理論、証明論の4つの領域に分類される。これらの領域はロジックのとくに一階述語論理や定義可能性に関する結果を共有している。計算機科学(とくに)における数理論理学の役割の詳細はこの記事には含まれていない。詳細はを参照。 この分野が始まって以来、数理論理学は数学基礎論の研究に貢献し、また逆に動機付けられてきた。数学基礎論は幾何学、算術、解析学に対する公理的な枠組みの開発とともに19世紀末に始まった。20世紀初頭、数学基礎論は、ヒルベルトのプログラムによって、数学の基礎理論の無矛盾性を証明するものとして形成された。クルト・ゲーデルとゲルハルト・ゲンツェンによる結果やその他は、プログラムの部分的な解決を提供しつつ、無矛盾性の証明に伴う問題点を明らかにした。集合論における仕事は殆ど全ての通常の数学を集合の言葉で形式化できることを示した。しかしながら、集合論に共通の公理からは証明することができない幾つかの命題が存在することも知られた。むしろ現代の数学基礎論では、全ての数学を展開できる公理系を見つけるよりも、数学の一部がどのような特定の形式的体系で形式化することが可能であるか(逆数学のように)ということに焦点を当てている。.

新しい!!: 1+1と数理論理学 · 続きを見る »

整数の合同

ウスの『Disquisitiones Arithmeticae(整数論)』のタイトルページ。 整数の合同(ごうどう、congruence)は、数学において二つの整数の間に定められる関係である。初めてこれを構造として研究したのはドイツの数学者ガウスで、1801年に発表された著書『Disquisitiones Arithmeticae』でも扱われている。今日では整数の合同は、数論や一般代数学あるいは暗号理論などに広く用いられる。 整数の合同に基づく数学の分野は合同算術 (modular arithmetic) と呼ばれる。これは整数そのものを直接的に扱うのではなく、何らかの整数(法と呼ばれる、以下本項では で表す)で割った剰余を代表元として扱う算術である。合同算術の歴史や道具立てあるいはその応用については合同算術の項を参照。また、より包括的で堅苦しくない説明は剰余類環 の項へ譲る。.

新しい!!: 1+1と整数の合同 · 続きを見る »

2

二」の筆順 2(二、に、じ、ふた、ふたつ)は、自然数、また整数において、1 の次で 3 の前の数である。英語の序数詞では、2nd、second となる。ラテン語では duo(ドゥオ)。.

新しい!!: 1+1と2 · 続きを見る »

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »