ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
ダウンロード
ブラウザよりも高速アクセス!
 

電波工学

索引 電波工学

電波工学(でんぱこうがく、英語:RF engineering)は、電波を使った無線通信、電波計測・電波測位(航法無線)、電波伝播、電波障害、アンテナ・給電線、電波を使った送電など電波の工学的利用を扱う電子工学の一分野である。 電波を通信、計測等に利用するためには、電波の基本的な理論を明らかとし、電波のふるまいを理解する必要がある。このため、電波工学は、マクスウェルの方程式を出発点とした電磁気学、回路理論、変復調理論、伝送理論、空中線理論、電波伝播理論などの幅広い学問の領域を対象としている。 電波工学が対象とする電波の周波数領域は、電波の利用及び応用を目的としている点で、いわゆる電波法で規定されている周波数領域であって、中でも高周波と呼ばれる領域が主な対象となっている。この背景としては、高周波を利用・応用する装置及びアンテナの寸法規模が、我々の生活において適切である点、製品の設計・開発を比較的容易に行える点、電波伝播特性が安定している点、が挙げられる。 電波は目に見えないため、電波のふるまいを理解するためには、数式によるモデル化・定式化が必要となる。近年、計算機の高性能化にともなって、電磁界理論に基づいた計算機シミュレーションを実施する機会が増えている。現実の電波のふるまいに、より近いシミュレーション結果を得るための計算手法の開発及び改善も行われている。 電波の利用及び応用範囲としては、音声・画像などの情報伝達、位置・距離などの計測、加熱などの調理、癌などの治療、などの幅広い分野が挙げられる。 一方、電波の利用及び応用が進むことにより、電子機器間での電波干渉、電波妨害等が発生し、電子機器の誤動作が問題となっている。このため、電波障害対策も重要な課題の一つとして電波工学の対象となっている。.

17 関係: マイクロ波工学マクスウェルの方程式アンテナ給電線無線工学無線通信高周波英語電子工学電磁気学電磁波工学電波電波伝播電波障害電波法送電悪性腫瘍

マイクロ波工学

電子レンジ家庭用のマイクロ波の使用例 マイクロ波工学(マイクロはこうがく)とは、電子工学の一分野であり、電波工学のうちのマイクロ波の領域に関することや、マイクロ波用電子管、マイクロ波用半導体素子、メーザーなどを扱う学問領域である。 マイクロ波通信やマイクロ波加熱などで必要になる学問領域である。.

新しい!!: 電波工学とマイクロ波工学 · 続きを見る »

マクスウェルの方程式

マクスウェルの方程式(マクスウェルのほうていしき、Maxwell's equations)は、電磁場のふるまいを記述する古典電磁気学の基礎方程式である。マイケル・ファラデーが幾何学的考察から見出した電磁力に関する法則が1864年にジェームズ・クラーク・マクスウェルによって数学的形式として整理された。マクスウェル-ヘルツの電磁方程式、電磁方程式などとも呼ばれ、マクスウェルはマックスウェルとも表記される。 真空中の電磁気学に限れば、マクスウェルの方程式の一般解は、ジェフィメンコ方程式として与えられる。 なお、電磁気学の単位系は、国際単位系に発展したMKSA単位系のほか、ガウス単位系などがあるが、以下では原則として、国際単位系を用いることとする。.

新しい!!: 電波工学とマクスウェルの方程式 · 続きを見る »

アンテナ

アンテナ(antenna)とは、高周波エネルギーを電波(電磁波)として空間に放射(送信)したり、逆に空間の電波(電磁波)を高周波エネルギーへ相互に変換(受信)する装置のことで、日本語だと空中線と呼ばれ、英語における本来の意味だと昆虫の触角を意味している。  アンテナは、その用途から送信用と受信用に分けられるが、可逆性を備えている物なら送受信の兼用が可能である。.

新しい!!: 電波工学とアンテナ · 続きを見る »

給電線

給電線(きゅうでんせん)とは送信機からアンテナに高周波電力を伝送するための伝送線路(電線)である。または、アンテナで電波を捕らえて発生した高周波電力を受信機に伝送するためにも用いられる。給電線とアンテナとの接続点を給電点(feedpoint)という。.

新しい!!: 電波工学と給電線 · 続きを見る »

無線工学

無線工学(むせんこうがく)は、特に無線通信に関する項目を扱う電子工学の一分野である。.

新しい!!: 電波工学と無線工学 · 続きを見る »

無線通信

無線通信(むせんつうしん)は、伝送路として線を使わない電気通信のことである。しばしば短縮して「無線」と呼ばれる。線を使わない無線通信に対して、線を使う通信の方は有線通信と呼ぶ。無線通信は軍事行動においてこそ長所際立つものの、気候変動や気温・水温などの変化によって受信が不安定なものとなる。.

新しい!!: 電波工学と無線通信 · 続きを見る »

高周波

周波(こうしゅうは)とは、電波、音波など、波形を構成するスペクトラムのうち比較的周波数の高いものを指す。音波の場合は、超音波と呼ばれることが多い。 「高周波」あるいは「低周波」は周波数に関する事項ではあるが、慣習上、「周波」と言い換えている。.

新しい!!: 電波工学と高周波 · 続きを見る »

英語

アメリカ英語とイギリス英語は特徴がある 英語(えいご、)は、イ・ヨーロッパ語族のゲルマン語派に属し、イギリス・イングランド地方を発祥とする言語である。.

新しい!!: 電波工学と英語 · 続きを見る »

電子工学

電子工学(でんしこうがく、Electronics、エレクトロニクス)は、電気工学の一部ないし隣接分野で、電気をマクロ的に扱うのではなく、またそのエネルギー的な側面よりも信号などの応用に関して、電子の(特に量子的な)働きを活用する工学である。なお、電気工学の意の英語 electrical engineering に対し、エレクトロニクス(electronics)という語には、明確に「工学」という表現が表面には無い。.

新しい!!: 電波工学と電子工学 · 続きを見る »

電磁気学

電磁気学(でんじきがく、)は、物理学の分野の1つであり、電気と磁気に関する現象を扱う学問である。工学分野では、電気磁気学と呼ばれることもある。.

新しい!!: 電波工学と電磁気学 · 続きを見る »

電磁波工学

電磁波工学(でんじはこうがく)とは、電磁波を扱う電子工学の一分野であり、電波工学(マイクロ波領域を含む)、電磁光学などの領域を対象としている。 電磁波工学は、マクスウェル方程式が基礎となっている。.

新しい!!: 電波工学と電磁波工学 · 続きを見る »

電波

ムネイル 電波(でんぱ)とは、電磁波のうち光より周波数が低い(言い換えれば波長の長い)ものを指す。光としての性質を備える電磁波のうち最も周波数の低いものを赤外線(又は遠赤外線)と呼ぶが、それよりも周波数が低い。.

新しい!!: 電波工学と電波 · 続きを見る »

電波伝播

電波伝播(でんぱでんぱ、Radio propagation)とは電波が空中を伝わり、離れた所に到達することである。無線通信は基本的に電波伝播を利用して行われる。 電波伝播の安定度・強度は自然現象に影響され周波数、時間、位置関係によって大きく左右される。自然現象が原因で通常とは異なる電波伝播が発生することを異常伝播という。 なお、日本の電波工学の分野で多くで用いられる電波伝搬(でんぱでんぱん)という用語用字は、電波法ではpropagationに対応する語として伝播ではなく伝搬という表記が用いられていることに起因する表現であり、電波工学の分野においては優勢である。.

新しい!!: 電波工学と電波伝播 · 続きを見る »

電波障害

電波障害(でんぱしょうがい、electromagnetic interference、EMI)とは、電波の受信に障害が発生したり、電波により電子機器が誤動作することである。.

新しい!!: 電波工学と電波障害 · 続きを見る »

電波法

電波法(でんぱほう、昭和25年5月2日法律第131号)は、電波の公平かつ能率的な利用を確保することによって、公共の福祉を増進することを目的とする(第1条)、日本の法律である。.

新しい!!: 電波工学と電波法 · 続きを見る »

送電

送電(そうでん、英:electric power transmission)とは、.

新しい!!: 電波工学と送電 · 続きを見る »

悪性腫瘍

悪性腫瘍(あくせいしゅよう、malignant tumor)は、遺伝子変異によって自律的で制御されない増殖を行うようになった細胞集団(腫瘍)のなかで周囲の組織に浸潤し、または転移を起こす腫瘍である。悪性腫瘍のほとんどは無治療のままだと全身に転移して患者を死に至らしめる大西『スタンダード病理学』第3版、pp.139-141Geoffrey M.Cooper『クーパー細胞生物学』pp.593-595とされる。 一般に癌(ガン、がん、cancer)、悪性新生物(あくせいしんせいぶつ、malignant neoplasm)とも呼ばれる。 「がん」という語は「悪性腫瘍」と同義として用いられることが多く、本稿もそれに倣い「悪性腫瘍」と「がん」とを明確に区別する必要が無い箇所は、同一語として用いている。.

新しい!!: 電波工学と悪性腫瘍 · 続きを見る »

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »