ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
ダウンロード
ブラウザよりも高速アクセス!
 

電気抵抗

索引 電気抵抗

電気抵抗(でんきていこう、レジスタンス、electrical resistance)は、電流の流れにくさのことである。電気抵抗の国際単位系 (SI) における単位はオーム(記号:Ω)である。また、その逆数はコンダクタンス と呼ばれ、電流の流れやすさを表す。コンダクタンスのSIにおける単位はジーメンス(記号:S)である。.

75 関係: 原子ひずみゲージ半導体単位定数不純物半導体平方メートル交流伝導帯張力価電子帯応力バンドギャップバンド理論メートルリアクタンストンネルダイオードヘイケ・カメルリング・オネスツェナーダイオードデバイ模型フェルミ準位フォノンドーパントダイオード分圧回路インピーダンスイオンイオンチャネルオームオームの法則ケルビンコンダクタンスシート抵抗ジーメンス内部抵抗商用電源国際単位系四端子測定法磁気抵抗細胞膜真性半導体結晶絶縁体絶縁抵抗計熱振動物理定数直列回路と並列回路直流表皮効果負性抵抗...質量超伝導近藤効果量子ホール効果自由電子金属長さ電場電圧電圧降下電荷担体電解質電解液電気伝導電気伝導体電気伝導率電気抵抗率電気抵抗率の比較電流逆数抵抗器正孔温度指数関数的減衰時間 インデックスを展開 (25 もっと) »

原子

原子(げんし、άτομο、atom)という言葉には以下の3つの異なった意味がある。.

新しい!!: 電気抵抗と原子 · 続きを見る »

ひずみゲージ

ひずみゲージ()またはストレインゲージは、物体のひずみを測定するための力学的センサである。ひずみ測定を利用して間接的に、応力計測や荷重計にも用いられる。.

新しい!!: 電気抵抗とひずみゲージ · 続きを見る »

半導体

半導体(はんどうたい、semiconductor)とは、電気伝導性の良い金属などの導体(良導体)と電気抵抗率の大きい絶縁体の中間的な抵抗率をもつ物質を言う(抵抗率だけで半導体を論じるとそれは抵抗器と同じ特性しか持ち合わせない)。代表的なものとしては元素半導体のケイ素(Si)などがある。 電子工学で使用されるICのような半導体素子はこの半導体の性質を利用している。 良導体(通常の金属)、半導体、絶縁体におけるバンドギャップ(禁制帯幅)の模式図。ある種の半導体では比較的容易に電子が伝導帯へと遷移することで電気伝導性を持つ伝導電子が生じる。金属ではエネルギーバンド内に空き準位があり、価電子がすぐ上の空き準位に移って伝導電子となるため、常に電気伝導性を示す。.

新しい!!: 電気抵抗と半導体 · 続きを見る »

単位

単位(たんい、unit)とは、量を数値で表すための基準となる、約束された一定量のことである。約束ごとなので、同じ種類の量を表すのにも、社会や国により、また歴史的にも異なる多数の単位がある。.

新しい!!: 電気抵抗と単位 · 続きを見る »

定数

数学における定数(ていすう、じょうすう、constant; 常数)あるいは定項 (constant term) は、二つの異なる意味を示し得る。そのひとつは固定 (fix) され、矛盾なく定義された数(またはもっとほかの数学的対象)であり、この意味で言う定数であることをはっきりさせるために「数学定数」(あるいは「物理定数」もそうだが)という語を用いることもある。もう一つの意味は、定数函数またはその(これらはふつうたがいに同一視される)を指し示すもので、この意味での「定数」は扱う問題における主変数に依存しない変数という形で表されるのが普通である。後者の意味での例として、は、与えられた函数の原始函数をすべて得るために特定の原始函数に加えられる、任意の(積分変数に依存しないという意味での)定数函数を言う。 例えば、一般の二次函数はふつう を定数(あるいはパラメタ)として のようにあらわされる。ここに変数 は考えている函数の引数のプレースホルダとなるものである。より明示的に のように書けば がこの函数の引数であることが明瞭で、しかも暗黙の裡に が定数であることを提示できる。この例では、定数 はこの多項式の係数と呼ばれる。 の項は を含まないからと呼ばれ(これを の係数と考えることができる)、多項式において次数が零の任意の項または式は定数である。.

新しい!!: 電気抵抗と定数 · 続きを見る »

不純物半導体

不純物半導体(ふじゅんぶつはんどうたい)は半導体の一種。外因性半導体(がいいんせいはんどうたい)とも言う。純粋な真性半導体に不純物(ドーパント)を微量添加(ドーピング)したものである。ドーピングする元素により、キャリアがホール(正孔)のP型半導体、キャリアが電子のN型半導体が得られる。キャリアの種類は不純物元素の最外殻電子の数に依存する場合が多く、最外殻電子が4より大きい時はN型半導体、最外殻電子が4より小さい場合はP型半導体になることが多い。 半導体の一種であるケイ素を例に取ると、ヒ素、リンの場合がN型半導体、ホウ素の場合がP型半導体になる。 不純物という用語はネガティブな意味でなく、不純物を添加したものという意で用いられている。.

新しい!!: 電気抵抗と不純物半導体 · 続きを見る »

平方メートル

平方メートル(へいほうメートル、square metre)は、計量法および国際単位系 (SI) における面積の単位である。1平方メートルは、「辺の長さが一メートルの正方形の面積」と定義される。 日本では、メートルを「米」と書くことから、「平方米」を略して平米(へいべい、へーべー)と略したり発音される場合もある。ただし計量法では、「平米」の表記も「へいべい」、「へーべー」の読みも認められていない。 平方メートルの単位記号は、mである。大文字によるMは用いることはできない。 1平方メートルは以下に等しい。.

新しい!!: 電気抵抗と平方メートル · 続きを見る »

交流

三角波、鋸歯状波 交流(こうりゅう、)とは、時間とともに周期的に向きが変化する電流(交流電流)を示す言葉であり、「交番電流」の略。また、同様に時間とともに周期的に大きさとその正負が変化する電圧を交流電圧というが、電流・電圧の区別をせずに交流または交流信号と呼ぶこともある。 交流の代表的な波形は正弦波であり、狭義の交流は正弦波交流()を指すが、広義には周期的に大きさと向きが変化するものであれば正弦波に限らない波形のものも含む。正弦波以外の交流は非正弦波交流()といい、矩形波交流や三角波交流などがある。.

新しい!!: 電気抵抗と交流 · 続きを見る »

伝導帯

伝導帯(でんどうたい、Conduction band)は、バンドギャップのある系において、バンドギャップの直上にある、空のバンドのこと。バンドギャップのない場合にも、価電子帯、伝導帯の区別ができる場合がある(例:半金属)。しかし、純然たる金属のバンドにおいては、価電子帯、伝導帯の区別が判然としない(区別できない)場合もある。.

新しい!!: 電気抵抗と伝導帯 · 続きを見る »

張力

張力(ちょうりょく、英語:tension)という言葉は、一般には単に引っ張る力というような意味で用いられる言葉であるが、物理学においては、物体のある平面において、引っ張り合う垂直応力として定義されている。 ただし、力学の例題で扱われる滑車の問題等において、紐が物体を引っ張る力を張力Tと表現するなど、物理学においても引っ張る力、特にひも状の物体に対して加わる力の反作用としてひも状の物体がその力を及ぼしている物体に対して加える力の意味で張力という言葉を用いることもある。 なお、ベルト伝動装置、チェーン伝動装置などの巻掛け伝動のものにおいては確実な動力の伝達のためには張力の管理が重要となる。 引っ張る力としての張力と、たるみからなる曲線をカテナリー曲線という。.

新しい!!: 電気抵抗と張力 · 続きを見る »

価電子帯

金属、および半導体・絶縁体のバンド構造の簡単な模式図 価電子帯(かでんしたい、valence band)とは、絶縁体や半導体において、価電子によって満たされたエネルギーバンドのこと。荷電子帯とも表記される。 絶対零度において「電子を含む一番エネルギーの高いバンド」が完全に電子で満たされている場合、これを狭義の充満帯 (filled band) と呼ぶ。これは絶縁体や半導体にのみ存在する。特に共有結合型結晶の充満帯を、価電子帯と呼ぶ。価電子帯の頂上から伝導帯の底までのギャップが、バンドギャップである。半導体や絶縁体においては、バンドギャップ中にフェルミ準位が存在する。 金属では価電子を含むバンドに空き準位がある(バンド中にフェルミ準位がある)ため、価電子がそのまま伝導電子(自由電子)となる。これに対し、半導体や絶縁体においては通常、価電子にバンドギャップを超えるエネルギーを与えて価電子帯から伝導帯へ励起することで、初めて伝導電子を得られる。完全に電子で占有された価電子帯では、電流は流れない。 なお広義には、電子で満たされた全てのエネルギーバンドを充満帯と呼ぶ。 Category:電子 Category:電子状態 Category:半導体.

新しい!!: 電気抵抗と価電子帯 · 続きを見る »

応力

応力(おうりょく、ストレス、stress)とは、物体連続体などの基礎仮定を満たすものとする。の内部に生じる力の大きさや作用方向を表現するために用いられる物理量である。物体の変形や破壊などに対する負担の大きさを検討するのに用いられる。 この物理量には応力ベクトル と応力テンソル の2つがあり、単に「応力」といえば応力テンソルのことを指すことが多い。応力テンソルは座標系などを特別に断らない限り、主に2階の混合テンソルおよび混合ベクトルとして扱われる(混合テンソルについてはテンソル積#テンソル空間とテンソルを参照)。応力ベクトルと応力テンソルは、ともに連続体内部に定義した微小面積に作用する単位面積あたりの力として定義される。そのため、それらの単位は、SIではPa (N/m2)、重力単位系ではkgf/mm2で、圧力と同じである。.

新しい!!: 電気抵抗と応力 · 続きを見る »

バンドギャップ

バンドギャップ(Band gap、禁止帯、禁制帯)とは、広義の意味は、結晶のバンド構造において電子が存在できない領域全般を指す。 ただし半導体、絶縁体の分野においては、バンド構造における電子に占有された最も高いエネルギーバンド(価電子帯)の頂上から、最も低い空のバンド(伝導帯)の底までの間のエネルギー準位(およびそのエネルギーの差)を指す。 E-k空間上において電子はこの状態を取ることができない。バンドギャップの存在に起因する半導体の物性は半導体素子において積極的に利用されている。 半導体のバンド構造の模式図。Eは電子の持つエネルギー、kは波数。Egが'''バンドギャップ'''。半導体(や絶縁体)では「絶対零度で電子が入っている一番上のエネルギーバンド」が電子で満たされており(価電子帯)、その上に禁制帯を隔てて空帯がある(伝導帯)。 金属、および半導体・絶縁体のバンド構造の簡単な模式図(k空間無視) バンドギャップを表現する図は、E-k空間においてバンドギャップ周辺だけに着目した図、さらにk空間を無視してエネルギー準位だけを表現した図も良く用いられる。.

新しい!!: 電気抵抗とバンドギャップ · 続きを見る »

バンド理論

固体物理学における固体のバンド理論(バンドりろん、band theory)または帯理論とは、結晶などの固体物質中に分布する電子の量子力学的なエネルギーレベルに関する理論を言う。1920年代後半にフェリックス・ブロッホ、ルドルフ・パイエルス、レオン・ブリルアンらによって確立された。.

新しい!!: 電気抵抗とバンド理論 · 続きを見る »

メートル

メートル(mètre、metre念のためであるが、ここでの「英」は英語(English language)による綴りを表しており、英国における綴りという意味ではない。詳細は「英語表記」の項及びノートの「英語での綴り」を参照。、記号: m)は、国際単位系 (SI) およびMKS単位系における長さの物理単位である。他の量とは関係せず完全に独立して与えられる7つのSI基本単位の一つである。なお、CGS単位系ではセンチメートル (cm) が基本単位となる。 元々は、地球の赤道と北極点の間の海抜ゼロにおける子午線弧長を 倍した長さを意図し、計量学の技術発展を反映して何度か更新された。1983年(昭和58年)に基準が見直され、現在は1秒の 分の1の時間に光が真空中を伝わる距離として定義されている。.

新しい!!: 電気抵抗とメートル · 続きを見る »

リアクタンス

リアクタンス(reactance)とは、交流回路のインダクタ(コイル)やキャパシタ(コンデンサ)における電圧と電流の比である。 リアクタンスは電気抵抗と同じ次元を持ち、単位としてはオームを持つが、リアクタンスはエネルギーを消費しない擬似的な抵抗である。誘導抵抗、感応抵抗ともいう。 リアクタンスは、電流の微分方程式の1次微分項の係数および1次積分項の係数であり、ずれた位相成分の比率を示す係数である。.

新しい!!: 電気抵抗とリアクタンス · 続きを見る »

トンネルダイオード

トンネルダイオードを表す回路記号トンネルダイオード(tunnel diode)または江崎ダイオード(Esaki diode)は、量子トンネル効果を使った半導体によるダイオードの一種で、高速動作を特徴としマイクロ波レベルの高周波回路でよく使われている。.

新しい!!: 電気抵抗とトンネルダイオード · 続きを見る »

ヘイケ・カメルリング・オネス

ヘイケ・カマリン・オンネス(Heike Kamerlingh Onnes, 1853年9月21日-1926年2月21日) はオランダの物理学者である。日本ではカーメルリング・オンネス、カマリン・オンネス、カマリン・オネスなど様々にカナ表記されている。ヘリウムの液化に成功、超伝導の発見など、低温物理学の先駆者として知られている。1913年にノーベル物理学賞を受賞した。.

新しい!!: 電気抵抗とヘイケ・カメルリング・オネス · 続きを見る »

ツェナーダイオード

ツェナーダイオード ツェナーダイオード(Zener diode)はダイオードの一種。別名を定電圧ダイオードともいい、その名の通り、一定の電圧(リファレンス)を得る目的で使用される素子である。 一般的な呼称はツェナーと省略されることが多く、文献によってはジーナーダイオードの記述もみられる。 通常のダイオードは、逆方向に電圧をかけても、ほとんど電流は流れないため、整流や検波などの用に供される。ところが、ある一定の電圧(降伏電圧もしくはツェナー電圧という)を上回ると、アバランシェ降伏と呼ばれる現象により、急激に電流が流れるようになる。 ツェナーダイオードが一般のダイオードと異なる点は、定電圧を得る目的で、降伏電圧が大幅に低くなるように設計されていることである。PN接合部に大量の不純物を添加し、P チャネルの価電子帯から N チャネルの伝導帯へ電子が移動しやすくなっている。この現象はトンネル効果によるもので、原子モデルでは共有結合のイオン化に該当する。 このツェナー効果は、物理学者のクラレンス・ツェナーにより発見された。逆バイアスを印加されたツェナーダイオードは、制御された降伏を示し、ダイオードにかかる電圧が降伏電圧に等しくなるように電流が流れる。ここから印加電圧を上げてもダイオードでの電圧降下はあまり変わらず電流量が増大してゆく。たとえば、ツェナー降伏電圧が3.2Vの素子に対してそれ以上の逆バイアス電圧を印加した場合は、電圧降下が3.2Vになる。しかし、いくらでも電流を流せるわけではないので、増幅段の基準電圧を発生させたり、あまり電流を必要としない場面での電圧を安定化させたりする素子として使われるのが一般的である。 この降伏電圧は、添加処理で極めて正確に調整することができる。このため、一般的に入手できるツェナーダイオードは種類が多く、1.2Vから200V程度まで販売されている。また、その誤差は、一般的なものでは5%や10%だが、0.05%以内といった超高精度の商品も存在する。 アバランシェダイオードにおけるアバランシェ現象も、これと類似している。実際には、同じ方法で2種類のダイオードが製造されているが、両方の現象の影響を受ける。約5.6Vまでのシリコンダイオードではツェナー現象による影響が支配的で、負の温度係数を示す。5.6V以上ではアバランシェ現象が支配的となり、正の温度係数を示す。 5.6Vのダイオードでは、この2つの現象が同時に起こり、各々の温度係数が丁度相殺される。このため、温度による影響を極力抑えたい用途には5.6Vのダイオードが適している。 最新の製造技術により、電圧が5.6V未満であれば温度係数を無視できる程度の素子を生産できるようになったが、電圧の高い素子では温度係数が劇的に大きくなる。たとえば、75Vのダイオードの温度係数は、12Vのダイオードの10倍にもなる。 通常、このようなダイオードはすべて、降伏電圧によらず「ツェナーダイオード」の総称で市場に出回っている。.

新しい!!: 電気抵抗とツェナーダイオード · 続きを見る »

デバイ模型

デバイ模型(デバイもけい、Debye model)とは熱力学と固体物理学において、固体におけるフォノンの比熱(熱容量)への寄与を推定する手法である。1912年にピーター・デバイにより考え出された。デバイ模型では、原子の熱による格子振動を箱の中のフォノンとして扱う。一方、先に発表されていたアインシュタイン模型では、固体を相互作用のない量子的な調和振動子の集まりとして取り扱う。 デバイ模型は低温における比熱が温度の三乗 に比例することを正しく予言する。また、アインシュタイン模型同様、比熱の高温におけるデュロン=プティの法則に従う振る舞いも正しく説明することができる。しかし、格子振動を単純化して扱っているため、中間的な温度における正確性には弱点がある。 デバイ模型についての厳密な取り扱いについては、を参照。.

新しい!!: 電気抵抗とデバイ模型 · 続きを見る »

フェルミ準位

フェルミ準位とは電子の全化学ポテンシャル(または電子の電気化学ポテンシャル)のことで、通常 または と表記される。物質のフェルミ準位は熱力学的な量であり、その意味は1つの電子を物質に与えるのに必要な熱力学的仕事である(電子を取り除くのに必要な仕事は考慮していない)。 バンド構造が電子的性質の決定にどのように関係しているか、電子回路において電圧と電荷の流れがどのように関係しているか、といったフェルミ準位の正確な理解は、固体物理学の理解に本質的である。固体のエネルギー準位を解析するために固体物理学で用いられるバンド構造理論においてフェルミ準位は、電子の仮想的なエネルギー準位だと考えることができ、熱力学的平衡においてこのエネルギー準位は「いかなる時間でも占有されている確率が50%」である。バンドエネルギー準位に関連するフェルミ準位の位置は、電子特性を決める重要な因子である。フェルミ準位は現実のエネルギー準位に必ずしも対応しておらず(絶縁体でのフェルミ準位はバンドギャップの中にある)、バンド構造の存在も必要としない。それにも関わらず、フェルミ準位は厳密に定義された熱力学的な量であり、フェルミ準位の差は電圧計で簡単に測定することができる。.

新しい!!: 電気抵抗とフェルミ準位 · 続きを見る »

フォノン

フォノン(phonon)、音子、音響量子、音量子は、振動(主に結晶中での格子振動)を量子化した粒子(準粒子、素励起)である。 振幅が大きくなる、つまり振動が激しくなることはフォノンの数が増えることで表される。 フォノンを持つ液体としては、超流動を示すヘリウム4がある。 原子核表面の核子の振動を量子化したものもフォノンと言う。.

新しい!!: 電気抵抗とフォノン · 続きを見る »

ドーパント

ドーパント()とは、半導体にドーピングされる不純物のこと。元素によりドナーもしくはアクセプター、あるいは、深い準位となる。このドーパントの注入により、N型半導体もしくはP型半導体の作成が可能である。.

新しい!!: 電気抵抗とドーパント · 続きを見る »

ダイオード

図1:ダイオードの拡大図正方形を形成しているのが半導体の結晶を示す 図2:様々な半導体ダイオード。下部:ブリッジダイオード 図3:真空管ダイオードの構造 図4 ダイオード(英: diode)は整流作用(電流を一定方向にしか流さない作用)を持つ電子素子である。最初のダイオードは2極真空管で、後に半導体素子である半導体ダイオードが開発された。今日では単にダイオードと言えば、通常、半導体ダイオードを指す。 1919年、イギリスの物理学者 William Henry Eccles がギリシア語の di.

新しい!!: 電気抵抗とダイオード · 続きを見る »

分圧回路

分圧回路(ぶんあつかいろ)または分圧器(ぶんあつき、Voltage divider)とは、電子工学において、ある電圧 (Vin) に比例した電圧 (Vout) を発生させるよう設計された単純な回路または機器である。また、低周波数の信号減衰器をそのように呼ぶこともある。分圧回路は抵抗分割回路(resistor divider)あるいは電位分割回路(potential divider)とも呼ばれる。.

新しい!!: 電気抵抗と分圧回路 · 続きを見る »

インピーダンス

インピーダンス(impedance)は、圧と流の比を表す単語である。圧と流の積は仕事率である。.

新しい!!: 電気抵抗とインピーダンス · 続きを見る »

イオン

イオン(Ion、ion)とは、電子の過剰あるいは欠損により電荷を帯びた原子または原子団のことである。電離層などのプラズマ、電解質の水溶液、イオン結晶などのイオン結合性を持つ物質内などに存在する。 陰極や陽極に引かれて動くことから、ギリシャ語のἰόνイオン, ローマ字表記でion("going")より、 ion(移動)の名が付けられた。.

新しい!!: 電気抵抗とイオン · 続きを見る »

イオンチャネル

イオンチャネルまたはイオンチャンネル(ion channel)とは、細胞の生体膜(細胞膜や内膜など)にある膜貫通タンパク質の一種で、受動的にイオンを透過させるタンパク質の総称である。細胞の膜電位を維持・変化させるほか、細胞でのイオンの流出入もおこなう。神経細胞など電気的興奮性細胞での活動電位の発生、感覚細胞での受容器電位の発生、細胞での静止膜電位の維持などに関与する。.

新しい!!: 電気抵抗とイオンチャネル · 続きを見る »

オーム

ーム()は、インピーダンスや電気抵抗(レジスタンス)、リアクタンスの単位である。国際単位系 における組立単位のひとつである。 名称は、電気抵抗に関するオームの法則を発見したドイツの物理学者、ゲオルク・ジーモン・オームにちなむ。記号はギリシャ文字のオメガ ('''Ω''') を用いる。これは、オームの頭文字であるアルファベットのO(オー)では、数字の0(ゼロ)と混同されやすいからである(なお、オームの名前をギリシャ文字で表記するとΓκέοργκ Ωμとなる)。 電気抵抗を表すための単位は、初期の電信業務に関連して経験的にいくつか作られてきた。1861年にが、質量・長さ・時間の単位から組み立てた実用上便利な大きさの単位としてオームを提唱した。オームの定義はその後何度か修正された。.

新しい!!: 電気抵抗とオーム · 続きを見る »

オームの法則

ルク・オーム オームの法則(オームのほうそく、)とは、導電現象において、電気回路の部分に流れる電流とその両端の電位差の関係を主張する法則である。クーロンの法則とともに電気工学で最も重要な関係式の一つである。 1781年にヘンリー・キャヴェンディッシュが発見したが、その業績は1879年にマクスウェルが『ヘンリー・キャヴェンディシュ電気学論文集』として出版するまで未公表であった。 ヘンリーの最初の発見後、1826年にドイツの物理学者であるゲオルク・オームによって再発見・公表されたため、その名を冠してオームの法則と呼ばれる。.

新しい!!: 電気抵抗とオームの法則 · 続きを見る »

ケルビン

ルビン(kelvin, 記号: K)は、熱力学温度(絶対温度)の単位である。国際単位系 (SI) において基本単位の一つとして位置づけられている。 ケルビンの名は、イギリスの物理学者で、絶対温度目盛りの必要性を説いたケルビン卿ウィリアム・トムソンにちなんで付けられた。なお、ケルビン卿の通称は彼が研究生活を送ったグラスゴーにあるから取られている。.

新しい!!: 電気抵抗とケルビン · 続きを見る »

コンダクタンス

ンダクタンス (conductance) とは、回路における電流の流れやすさのこと。すなわち、直流回路では電気抵抗の逆数、交流回路ではインピーダンスの逆数の実数部。記号 G。単位ジーメンス(記号 S )、またはモー(記号\mho )。電気伝導力とも言う。.

新しい!!: 電気抵抗とコンダクタンス · 続きを見る »

シート抵抗

ート抵抗 (sheet resistance, sheet resistivity) とは、一様の厚さを持つ薄い膜やフィルム状物質の電気抵抗を表す量のひとつ。表面抵抗率、面抵抗率とも呼ばれる。.

新しい!!: 電気抵抗とシート抵抗 · 続きを見る »

ジーメンス

ーメンス(siemens, 記号: S)は、コンダクタンス・アドミタンス・サセプタンスの単位で、SI組立単位の一つである。 その名はドイツの物理学者ヴェルナー・フォン・ジーメンスにちなむ。1971年の第14回国際度量衡総会(CGPM)において、ジーメンスをSI組立単位に導入することが採択された。 コンダクタンスは電気抵抗の逆数であり、ジーメンスは電気抵抗の単位オーム (Ω) の逆数として定義される。日本の計量単位令では「1アンペアの直流の電流が流れる導体の二点間の直流の電圧が1ボルトであるときのその二点間の電気のコンダクタンス」と定義している。 ジーメンスを他の単位で表すと以下のようになる。.

新しい!!: 電気抵抗とジーメンス · 続きを見る »

内部抵抗

内部抵抗(ないぶていこう)は、電源や電気計器などに含まれる電気抵抗である。電気素子や配線に含まれる電気抵抗は内部抵抗と呼ばれない。 小電流の機器では内部抵抗が大きな影響を与えることはないが、大電流を必要とする機器では電源電圧の低下に繋がるため無視できなくなる場合がある。.

新しい!!: 電気抵抗と内部抵抗 · 続きを見る »

商用電源

商用電源(しょうようでんげん)とは、電力の製造(発電)と販売(送電・配電)を業とする者、すなわち電力会社から電力消費者に届けられる電力および電力を電力消費者に届ける(供給する)ための設備一般の総称である。電力が商取引対象とされることからの名称であり、電力消費者の電力使途からの総称ではない。 一般には商用電源=AC電源(エーシーでんげん)と称されることも多い。これは今日、電力会社から一般的な電力消費者、すなわち一般家庭などに供給される電力が交流(Alternating Current)であることからきている。しかし電力会社から電力消費者への電力供給は直流(Direct Current)であってもよく、事実日本でも直流による供給がなされているところがあるため、本来、同義にはならない。.

新しい!!: 電気抵抗と商用電源 · 続きを見る »

国際単位系

国際単位系(こくさいたんいけい、Système International d'unités、International System of Units、略称:SI)とは、メートル法の後継として国際的に定めた単位系である。略称の SI はフランス語に由来するが、これはメートル法がフランスの発案によるという歴史的経緯による。SI は国際単位系の略称であるため「SI 単位系」というのは誤り。(「SI 単位」は国際単位系の単位という意味で正しい。) なお以下の記述や表(番号を含む。)などは国際単位系の国際文書第 8 版日本語版による。 国際単位系 (SI) は、メートル条約に基づきメートル法のなかで広く使用されていたMKS単位系(長さの単位にメートル m、質量の単位にキログラム kg、時間の単位に秒 s を用い、この 3 つの単位の組み合わせでいろいろな量の単位を表現していたもの)を拡張したもので、1954年の第10回国際度量衡総会 (CGPM) で採択された。 現在では、世界のほとんどの国で合法的に使用でき、多くの国で使用することが義務づけられている。しかしアメリカなど一部の国では、それまで使用していた単位系の単位を使用することも認められている。 日本は、1885年(明治18年)にメートル条約に加入、1891年(明治24年)施行の度量衡法で尺貫法と併用することになり、1951年(昭和26年)施行の計量法で一部の例外を除きメートル法の使用が義務付けられた。 1991年(平成3年)には日本工業規格 (JIS) が完全に国際単位系準拠となり、JIS Z 8203「国際単位系 (SI) 及びその使い方」が規定された。 なお、国際単位系 (SI) はメートル法が発展したものであるが、メートル法系の単位系の亜流として「工学単位系(重力単位系)」「CGS単位系」などがあり、これらを区別する必要がある。 SI単位と非SI単位の分類.

新しい!!: 電気抵抗と国際単位系 · 続きを見る »

四端子測定法

四端子測定法は物性測定において電気抵抗をより正確に測る方法の一つである。 被測定物の抵抗値が比較的低い場合や、超伝導体のように抵抗が限りなくゼロに近くなる場合に有効な測定手段である。.

新しい!!: 電気抵抗と四端子測定法 · 続きを見る »

磁気抵抗

磁気抵抗(じきていこう;英 magnetic reluctance または magnetic resistance)は、磁気回路における磁束の流れにくさを表す度合いで、起磁力を磁束で割った値で表される。電気回路における電流の流れにくさを表す電気抵抗(electrical resistance)に対応するもの(アナロジー)である。 リラクタンス(reluctance)と呼ばれることも多いが、学術用語集(物理学編・計測工学編・地震学編)では「磁気抵抗」となっている。 まぎらわしいが、磁気抵抗効果(magnetoresistance)とはまったく別のものである。.

新しい!!: 電気抵抗と磁気抵抗 · 続きを見る »

細胞膜

動物細胞の模式図図中の皮のように見えるものが'''細胞膜'''、(1) 核小体(仁)、(2) 細胞核、(3) リボソーム、(4) 小胞、(5) 粗面小胞体、(6) ゴルジ体、(7) 微小管、(8) 滑面小胞体、(9) ミトコンドリア、(10) 液胞、(11) 細胞質基質、(12) リソソーム、(13) 中心体 細胞膜(さいぼうまく、cell membrane)は、細胞の内外を隔てる生体膜。形質膜や、その英訳であるプラズマメンブレン(plasma membrane)とも呼ばれる。 細胞膜は細胞内外を単に隔てている静的な構造体ではなく、特異的なチャンネルによってイオンなどの低分子を透過させたり、受容体を介して細胞外からのシグナルを受け取る機能、細胞膜の一部を取り込んで細胞内に輸送する機能など、細胞にとって重要な機能を担っている。.

新しい!!: 電気抵抗と細胞膜 · 続きを見る »

真性半導体

真性半導体(しんせいはんどうたい)とは、添加物を混じえてない純粋な半導体のことを指す。真性半導体の英語名「intrinsic semiconductor」からi型半導体と呼ばれることもある。.

新しい!!: 電気抵抗と真性半導体 · 続きを見る »

結晶

結晶(けっしょう、crystal)とは原子や分子が空間的に繰り返しパターンを持って配列しているような物質である。より厳密に言えば離散的な空間並進対称性をもつ理想的な物質のことである。現実の物質の大きさは有限であるため、そのような理想的な物質は厳密には存在し得ないが、物質を構成する繰り返し要素(単位胞)の数が十分大きければ(アボガドロ定数個程度になれば)結晶と見なせるのである。 この原子の並びは、X線程度の波長の光に対して回折格子として働き、X線回折と呼ばれる現象を引き起こす。このため、固体にX線を当てて回折することを確認できれば、それが結晶していると判断できる。現実に存在する結晶には格子欠陥と呼ばれる原子の配列の乱れが存在し、これによって現実の結晶は理想的な性質から外れた状態となる。格子欠陥は、文字通り「欠陥」として物性を損ねる場合もあるが、逆に物質を特徴付けることもあり、例えば、一般的な金属が比較的小さな力で塑性変形する事は、結晶欠陥の存在によって説明される。 準結晶と呼ばれる構造は、並進対称性を欠くにもかかわらず、X線を回折する高度に規則的な構造を持っている。数学的には高次元結晶の空間への射影として記述される。また、液晶は3次元のうちの一つ以上の方向について対称性が失われた状態である。そして、規則正しい構造をもたない物質をアモルファス(非晶質)と呼び、これは結晶の対義語である。.

新しい!!: 電気抵抗と結晶 · 続きを見る »

絶縁体

絶縁体(ぜつえんたい、insulator)は、電気あるいは熱を通しにくい性質を持つ物質の総称である。.

新しい!!: 電気抵抗と絶縁体 · 続きを見る »

絶縁抵抗計

絶縁抵抗計(ぜつえんていこうけい、英語:ohmmeter)は電力回路の絶縁抵抗測定試験に使われる保守点検用電気計測器であり、メガー(現:en:Megger Group Limited社の商標に由来)、電気抵抗計とも呼ばれる。.

新しい!!: 電気抵抗と絶縁抵抗計 · 続きを見る »

熱振動

熱振動(ねつしんどう、Thermal vibration)は、原子の振動のこと。分子や固体中の原子は運動エネルギーを持っていて、基準となる位置を中心に振動運動をしている。結晶格子上の原子の熱振動は特に格子振動とよばれる。 温度が高くなるほど振動の振幅は大きくなる。絶対零度であっても、不確定性原理から原子の振動は止まっていない(零点振動)。 なお、類似した言葉に熱運動(thermal motion) がある。こちらは微小な粒子がするランダムな運動で、ブラウン運動の原因ともなる。熱運動については熱の記事を参照。.

新しい!!: 電気抵抗と熱振動 · 続きを見る »

物理定数

物理定数(ぶつりていすう、ぶつりじょうすう、physical constant)とは、値が変化しない物理量のことである。プランク定数や万有引力定数、アボガドロ定数などは非常に有名なものである。例えば、光速はこの世で最も速いスカラー量としてのスピードで、ボーア半径は水素の電子の(第一)軌道半径である。また、大半の物理定数は固有の単位を持つが、光子と電子の相互作用を具体化する微細構造定数の様に単位を持たない無次元量も存在する。 以下に示す数値で特記のないものは科学技術データ委員会が推奨する値でありNIST、論文として複数の学術雑誌に投稿された後、2015年6月25日に""として発表されたものであるConstants bibliography。 以下の表の「値」の列における括弧内の数値は標準不確かさを示す。例えば は、 という意味である(不確かさを参照)。.

新しい!!: 電気抵抗と物理定数 · 続きを見る »

直列回路と並列回路

列回路と並列回路(ちょくれつかいろとへいれつかいろ、英語:series and parallel circuits)とは、電子回路や電気回路の回路構成である。 電子部品の回路上の接続方法には直列(series)と並列(parallel)がある。2つの端子を持つ部品を数珠繋ぎに接続した回路を直列回路(series circuit)、2つの端子をそれぞれ互いに接続した回路を並列回路(parallel circuit)と呼ぶ。直列回路では、電流の経路が1つであり、同じ電流が各部品を順に流れる。並列回路では、電流の経路が分岐して各部品に同じ電圧がかかる。 例えば、2つの豆電球と電池を使った簡単な回路を考えてみよう。電池から伸びた導線が1つの豆電球に接続され、そこから次の豆電球に接続され、最終的に電池に戻るという回路構成は直列回路である。電池から2本の導線が伸びて、それぞれ別の豆電球に繋がり、そこからまた別々に電池に戻る場合、回路構成は並列回路である。.

新しい!!: 電気抵抗と直列回路と並列回路 · 続きを見る »

直流

流の波形 直流(ちょくりゅう、Direct Current, DC)は、時間によって大きさが変化しても流れる方向(正負)が変化しない「直流電流」の事である。同様に、時間によって方向が変化しない電圧を直流電圧という。狭義には、方向だけでなく大きさも変化しない電流、電圧のことを指し、流れる方向が一定で、電流・電圧の大きさが変化するもの(右図の下2つ)は脈流(pulsating current)という。直流と異なり、周期的に方向が変化する電流を交流という。.

新しい!!: 電気抵抗と直流 · 続きを見る »

表皮効果

表皮効果(ひょうひこうか)は交流電流が導体を流れるとき、電流密度が導体の表面で高く、表面から離れると低くなる現象のことである。周波数が高くなるほど電流が表面へ集中するので、導体の交流抵抗は高くなる。 一般に高周波における影響が論じられることが多いが、電力系統など大電流を扱う際にも重要で、直流送電が有利とされる理由の一つでもある。 表皮効果は多くの科学者が研究し、ウィリアム・トムソン(ケルヴィン卿)によって1887年に説明された。導体の電流密度Jは 深さδに対して、次式のように減少する。 ここで d は表皮深さで、電流が 表面電流の1/e (約 0.37)になる深さであり次のように計算される。 dの厚さの平板が直流電流に対して生じる抵抗と、厚さがdよりもっと厚い平板の交流電流に対する抵抗は同じである。交流電流に対して電線は直流電流に対する厚さdのパイプのような抵抗を示す。.

新しい!!: 電気抵抗と表皮効果 · 続きを見る »

負性抵抗

負性抵抗(ふせい-ていこう)とは、入力インピーダンスを見た際に掛けた電圧に対して 抵抗値が見掛け上マイナスになるような回路ブロックを指す。(詳しい解説は後述する。) 負性抵抗とは見かけ上の物であり、一般的な受動素子では発生しない。 負性抵抗と負性微分抵抗は異なり、 負性微分抵抗は「電圧の増加により、電流が減少する」というような、 オームの法則の抵抗と対極となる電気回路の特性のことを指す。 トンネルダイオード(エサキダイオードともいう)やガン・ダイオードでは、 動作領域の一部で負性微分抵抗の特性を示す。 カルコゲナイド・ガラスや導電性高分子も同様の特性を示す。 以下、負性抵抗の実現法について述べる。負性抵抗はNIC(Negative Impedance Converter:負性インピーダンス変換回路 )を用いて実現される。負性抵抗は、NICを構成するためのオペアンプ、R1、R2、そして負荷抵抗RLから構成される。 接続としては電圧源Vが接続されるのがオペアンプの+入力端子、そして+入力端子とオペアンプの出力端子の間に R1、そして同出力端子と‐入力端子の間にR2が、-入力端子とGNDの間に負荷抵抗RLが接続される。 ここでナレータノレータモデルを使ってオペアンプは‐入力端子と+入力端子の電圧が等しくなるように働くため (そのために‐端子に負帰還がされている。時間のある方はオペアンプの接続を‐端子+端子で入れ替えてみると 出力が発散してしまいうまく動かないことを確認できるでしょう。)、 負荷抵抗RLにはV/RLがGNDに向かって流れる。この電流はオペアンプの入力端子の入力インピーダンスを かなり大きいと見積もれるためそのままオペアンプの出力端電圧Voutから-端子の方向に流れる電流と考える事が出来る。 ここでR1.

新しい!!: 電気抵抗と負性抵抗 · 続きを見る »

質量

質量(しつりょう、massa、μᾶζα、Masse、mass)とは、物体の動かしにくさの度合いを表す量のこと。.

新しい!!: 電気抵抗と質量 · 続きを見る »

超伝導

超伝導(ちょうでんどう、superconductivity)とは、特定の金属や化合物などの物質を非常に低い温度へ冷却したときに、電気抵抗が急激にゼロになる現象。「超電導」と表記されることもある。1911年、オランダの物理学者ヘイケ・カメルリング・オンネスにより発見された。この現象と同時に、マイスナー効果により外部からの磁力線が遮断されることから、電気抵抗の測定によらなくとも、超伝導状態が判別できる。この現象が現れるときの温度は超伝導転移温度と呼ばれ、この温度を室温程度に上昇させること(室温超伝導)は、現代物理学の重要な研究目標の一つ。.

新しい!!: 電気抵抗と超伝導 · 続きを見る »

近藤効果

近藤効果(こんどうこうか、Kondo effect)とは、磁性を持った極微量な不純物(普通磁性のある鉄原子など)がある金属では、温度を下げていくとある温度以下で電気抵抗が上昇に転じる現象である。これは通常の金属の、温度を下げていくとその電気抵抗も減少していくという一般的な性質とは異なっている。現象そのものは電気抵抗極小現象とよばれ、1930年頃から知られていたが、その物理的機構は1964年に日本の近藤淳が初めて理論的に解明した。近藤はこの仕事により1973年に日本学士院恩賜賞を受章した。.

新しい!!: 電気抵抗と近藤効果 · 続きを見る »

量子ホール効果

量子ホール効果(りょうしホールこうか、quantum hall effect)は、半導体‐絶縁体界面や半導体のヘテロ接合などで実現される、2次元電子系に対し強い磁場(強磁場)を印加すると、電子の軌道運動が量子化され、エネルギー準位が離散的な値に縮退し、ランダウ準位が形成される現象を指す。ランダウ準位の状態密度は実際の試料では不純物の影響によってある程度の広がりを持つ。この時、フェルミ準位の下の電子は、波動関数が空間的に局在するようになる。これをアンダーソン局在という。 そして絶対温度がゼロ度(.

新しい!!: 電気抵抗と量子ホール効果 · 続きを見る »

自由電子

自由電子(じゆうでんし, free electron)とはポテンシャルがいたるところでゼロ、つまり何ら束縛を受けていない電子のこと。電子気体(フェルミ気体)とも呼ばれることがある。この自由電子をモデルとしたものを自由電子モデル(自由電子模型、Free electron model)と言う。現実の電子系について、それらが自由電子であると仮定する近似を自由電子近似と言う。 特に金属の場合は、伝導電子と同じ意味で自由電子という言葉が用いられる。金属内部の自由電子は、電気伝導や熱伝導を担う。 実際には通常の金属においても、伝導電子はごく弱くはあるが相互作用を受けている。強く束縛を受ける伝導電子などには適用できず、電子同士の多体相互作用も無視している。自由電子として扱うのは一種の理想化である。.

新しい!!: 電気抵抗と自由電子 · 続きを見る »

金属

リウム の結晶。 リチウム。原子番号が一番小さな金属 金属(きんぞく、metal)とは、展性、塑性(延性)に富み機械工作が可能な、電気および熱の良導体であり、金属光沢という特有の光沢を持つ物質の総称である。水銀を例外として常温・常圧状態では透明ではない固体となり、液化状態でも良導体性と光沢性は維持される。 単体で金属の性質を持つ元素を「金属元素」と呼び、金属内部の原子同士は金属結合という陽イオンが自由電子を媒介とする金属結晶状態にある。周期表において、ホウ素、ケイ素、ヒ素、テルル、アスタチン(これらは半金属と呼ばれる)を結ぶ斜めの線より左に位置する元素が金属元素に当たる。異なる金属同士の混合物である合金、ある種の非金属を含む相でも金属様性質を示すものは金属に含まれる。.

新しい!!: 電気抵抗と金属 · 続きを見る »

長さ

長さ(ながさ、length)とは、.

新しい!!: 電気抵抗と長さ · 続きを見る »

電場

電場(でんば)または電界(でんかい)(electric field)は、電荷に力を及ぼす空間(自由電子が存在しない空間。絶縁空間)の性質の一つ。E の文字を使って表されることが多い。おもに理学系では「電場」、工学系では「電界」ということが多い。また、電束密度と明確に区別するために「電場の強さ」ともいう。時間によって変化しない電場を静電場(せいでんば)または静電界(せいでんかい)とよぶ。また、電場の強さ(電界強度)の単位はニュートン毎クーロンなので、アンテナの実効長または実効高を掛けると、アンテナの誘起電圧 になる。.

新しい!!: 電気抵抗と電場 · 続きを見る »

電圧

電圧(でんあつ、voltage)とは直観的には電気を流そうとする「圧力のようなもの」である-->。単位としては, SI単位系(MKSA単位系)ではボルト(V)が使われる。電圧を意味する記号には、EやVがよく使われる。 電圧は電位差ないしその近似によって定義される。 電気の流れに付いては「電流」を参照の事。.

新しい!!: 電気抵抗と電圧 · 続きを見る »

電圧降下

電圧降下(でんあつこうか)とは、電気回路に電流を流したとき、回路中に存在する電気抵抗の両端に電位差が生ずる現象のこと。または生じた電位差のこと。このとき電流I、電気抵抗Rと電位差Vとの関係は、V.

新しい!!: 電気抵抗と電圧降下 · 続きを見る »

電荷担体

電荷担体または電荷キャリア(charge carrier)とは、物理学において電荷を運ぶ自由な粒子を指し、特に電気伝導体における電流を担う粒子を指す。例えば、電子やイオンがある。 金属では、伝導電子が電荷担体となる。各原子の外側の1個または2個の価電子は金属の結晶構造の中を自由に移動できる。この自由電子の雲をフェルミ気体という。 塩水のような電解液では、陽イオンと陰イオンが電荷担体となる。同様にイオン性固体が融解した液体においても、陽イオンと陰イオンが電荷担体となる(例えば、ホール・エルー法を参照)。 電弧のようなプラズマでは、電子とイオン化した気体の陽イオン、さらには電極が蒸発した素材などが電荷担体となる。電極の気化は真空でも起きるが、電弧は真空中では存在しえない。その場合は気化した電極が低圧の気体となって電弧を生じるための電荷担体となっている。 真空管などの真空中では、自由電子が電荷担体となる。 半導体では、伝導電子と正孔(ホール)が電荷担体となる。正孔とは価電子帯の空席になっている部分を粒子のように移動するものと捉えた見方であり、正の電荷を担う。N型半導体では伝導電子、P型半導体では正孔が電荷担体(多数キャリア)となる。pn接合にみられる空乏層には電荷担体はほとんどない。.

新しい!!: 電気抵抗と電荷担体 · 続きを見る »

電解質

電解質(でんかいしつ、英語:electrolyte)とは溶媒中に溶解した際に、陽イオンと陰イオンに電離する物質のことである。これに対し、溶媒中に溶解しても電離しない物質を非電解質という。 一般に電解液は電気分解が起こる以上の電圧をかければ電気伝導性を示すが、電解液でないものは電気抵抗が大きい。また、ほとんど溶媒中に溶解しないものは電解質にも非電解質にも含まれない。 溶融した電解質や固体の電解質というものも存在する。 つまり、物質を水に溶かしたとき、イオンになるものとならないものがあり、電気を通す物質はイオンになるものである。これを電解質という。 電解質溶液は十分に高い電圧(一般に数ボルト程度)をかけると電気分解することが可能である。「電解質」という名称はこのことから付けられた。電気分解を起こすことのできる理論分解電圧 V ′ はギブス自由エネルギー変化と以下の関係にある。実際には過電圧のため理論分解電圧より高い電圧を必要とする。.

新しい!!: 電気抵抗と電解質 · 続きを見る »

電解液

電解液 (でんかいえき、Electrolyte Solution) とはイオン性物質を水などの極性溶媒に溶解させて作った、電気伝導性を有する溶液をさす。電解質溶液ともいい、英語ではIonic solutionということもあることから、イオン溶液とも呼ばれることもある。狭義には、電池や電気メッキ槽にいれる電解質水溶液を指す。 一方、溶媒を含まず、イオンのみからなる液体のことはイオン液体もしくは溶融塩と呼び、区別される。.

新しい!!: 電気抵抗と電解液 · 続きを見る »

電気伝導

電気伝導(でんきでんどう、electrical conduction)は、電場(電界)を印加された物質中の荷電粒子を加速することによる電荷の移動現象、すなわち電流が流れるという現象。 電荷担体は主として電子であるが、イオンや正孔などもこれに該当する。荷電粒子の加速には抵抗力が働き、これを電気抵抗という。抵抗の主な原因として、格子振動や不純物などによる散乱が挙げられる。この加速と抵抗は、最終的には釣り合うことになる。.

新しい!!: 電気抵抗と電気伝導 · 続きを見る »

電気伝導体

電気伝導体(でんきでんどうたい)は移動可能な電荷を含み電気を通しやすい材料、すなわち電気伝導率(導電率)の高い材料である。良導体、単に導体とも呼ぶ。 電気伝導率は、物質によってとる値の範囲が広い物性値で、金属からセラミックまで20桁ほど幅がある。一般には伝導率がグラファイト(電気伝導率 106S/m)と同等以上のものが導体、106S/m以下のものを不導体(絶縁体)、その中間の値をとるものを半導体と分類する。106S/mという電気伝導率は、1mm2の断面積で1mの導体の抵抗が1Ωになる電気の通りやすさである。 銅やアルミニウムといった金属導体では、電子が移動可能な荷電粒子となっている(電流を参照)。移動可能な正の電荷としては、格子内の原子で電子が抜けている部分という形態(正孔)や電池の電解液などにイオンの形で存在する場合がある。不導体が電流を通さないのは移動可能な電荷が少ないためである。.

新しい!!: 電気抵抗と電気伝導体 · 続きを見る »

電気伝導率

電気伝導率(でんきでんどうりつ、electrical conductivity)とは、物質中における電気伝導のしやすさを表す物性量である。導電率(どうでんりつ)や電気伝導度(でんきでんどうど)とも呼ばれる。理学系では「電気伝導率」、工学系では「導電率」と呼ばれる傾向がある。また、『学術用語集』では「電気伝導率」が多く、次いで「電気伝導度」である。 農学分野において肥料濃度の目安として用いられるが、この場合は英語の頭文字をとり、「EC濃度」もしくは単に「EC」と呼ぶことが多い。 なお、英語の は電気伝導度と訳されることがあるが、標準的な用語はコンダクタンスである。 電気伝導率は物質ごとに値が異なる物性量である。金属の電気伝導率は非常に大きいが水晶などの絶縁体では電気伝導率は非常に小さい。例えば、金属である銀は銀の電気伝導率は であるが、ガラスでは S/m から S/m である。.

新しい!!: 電気抵抗と電気伝導率 · 続きを見る »

電気抵抗率

電気抵抗率(でんきていこうりつ、英語:electrical resistivity)は、どんな材料が電気を通しにくいかを比較するために、用いられる物性値である。単に、抵抗率(resistivity)、比抵抗(specific electrical resistance)とも呼ばれる。単位は、オームメートル(Ω・m)である。慣例的に Ω・cm もよく使われる。 電気抵抗 R の値は、電気抵抗率を \rho(ロー)、導体の長さを l 、導体の断面積を A とすると次の式で示される。 すなわち、電気抵抗率 \rho の値は、次の式で表される。 電気抵抗率 \rho の逆数 \frac を電気伝導率(導電率)と呼ぶ。.

新しい!!: 電気抵抗と電気抵抗率 · 続きを見る »

電気抵抗率の比較

本項では、電気抵抗率の比較(でんきていこうりつのひかく)ができるよう、昇順に表にする。 長さ L 、断面積 A の物体の電気抵抗 R は、次式で求めることができる。 この ρ が電気抵抗率であり、単位は Ωm である。 電気抵抗率は、温度や不純物の量など様々な条件により変化する。特記のない場合は室温(20℃、293.15ケルビン)での値を示す。また、*で示したもの(主として半導体)の電気抵抗率は不純物に強く依存する。 以下に示す値は概算である。累乗の値はほぼ正確であるが、(桁数が多く書かれているものも含めて)係数はあまり正確ではない。単体については、それぞれの元素の項目に記載されている導電率の逆数を計算し、4桁目で四捨五入している。.

新しい!!: 電気抵抗と電気抵抗率の比較 · 続きを見る »

電流

電流(でんりゅう、electric current電磁気学に議論を留める限りにおいては、単に と呼ぶことが多い。)は、電子に代表される荷電粒子他の荷電粒子にはイオンがある。また物質中の正孔は粒子的な性格を持つため、荷電粒子と見なすことができる。の移動に伴う電荷の移動(電気伝導)のこと、およびその物理量として、ある面を単位時間に通過する電荷の量のことである。 電線などの金属導体内を流れる電流のように、多くの場合で電流を構成している荷電粒子は電子であるが、電子の流れは電流と逆向きであり、直感に反するものとなっている。電流の向きは正の電荷が流れる向きとして定義されており、負の電荷を帯びる電子の流れる向きは電流の向きと逆になる。これは電子の詳細が知られるようになったのが19世紀の末から20世紀初頭にかけての出来事であり、導電現象の研究は18世紀の末から進んでいたためで、電流の向きの定義を逆転させることに伴う混乱を避けるために現在でも直感に反する定義が使われ続けている。 電流における電荷を担っているのは電子と陽子である。電線などの電気伝導体では電子であり、電解液ではイオン(電子が過不足した粒子)であり、プラズマでは両方である。 国際単位系 (SI) において、電流の大きさを表す単位はアンペアであり、単位記号は A であるアンペアはSI基本単位の1つである。。また、1アンペアの電流で1秒間に運ばれる電荷が1クーロンとなる。SI において電荷の単位を電流と時間の単位によって構成しているのは、電荷より電流の測定の方が容易なためである。電流は電流計を使って測定する。数式中で電流量を表すときは または で表現される。.

新しい!!: 電気抵抗と電流 · 続きを見る »

逆数

逆数(ぎゃくすう、reciprocal)とは、ある数に掛け算した結果が となる数である。すなわち、数 の逆数 とは次のような関係を満たす。 通常、 の逆数は分数の記法を用いて のように表されるか、冪の記法を用いて のように表される。 を乗法に関する単位元と見れば、逆数とは乗法逆元(じょうほうぎゃくげん、multiplicative inverse)の一種であり、乗法逆元とは一般化された逆数である。 上述の式から明らかなように、 と の役割を入れ替えれば、 は の逆数であると言える。従って、 の逆数が であるとき の逆数は である。 が である場合、任意の数との積は になるため、(0 ≠ 1 であれば) に対する逆数は存在しない。 また、任意の について必ずしもその逆数が存在するとは限らない。たとえば、自然数の範囲では上述の関係を満たす数は 以外には存在しない。 を除く任意の数 について逆数が常に存在するようなものには、有理数や実数、複素数がある。これらのように四則演算が自由にできる集合を体と呼ぶ。 逆数は乗法における逆元であるが、加法における逆元として反数がある。 1つの二項演算を持つ集合であって左右の逆元が常に存在するもの(代数的構造)はと呼ばれる。.

新しい!!: 電気抵抗と逆数 · 続きを見る »

抵抗器

抵抗器(ていこうき、resistor)とは、一定の電気抵抗値を得る目的で使用される電子部品であり受動素子である。通常は「抵抗」と呼ばれることが多い。 電気回路用部品として、電流の制限や、電圧の分圧、時定数回路などの用途に用いられる。集積回路など半導体素子の内部にも抵抗素子が形成されているが、この項では独立した回路部品としての抵抗器について述べる。.

新しい!!: 電気抵抗と抵抗器 · 続きを見る »

正孔

正孔(せいこう)は、ホール(Electron hole または単にhole)ともいい、物性物理学の用語。半導体(または絶縁体)において、(本来は電子で満たされているべき)価電子帯の電子が不足した状態を表す。たとえば光や熱などで価電子が伝導帯側に遷移することによって、価電子帯の電子が不足した状態ができる。この電子の不足によってできた孔(相対的に正の電荷を持っているように見える)が正孔(ホール)である。 半導体結晶中においては、周囲の価電子が次々と正孔に落ち込み別の場所に新たな正孔が生じる、という過程を順次繰り返すことで結晶内を動き回ることができ、あたかも「正の電荷をもった電子」のように振舞うとともに電気伝導性に寄与する。なお、周囲の価電子ではなく、伝導電子(自由電子)が正孔に落ち込む場合には、伝導電子と価電子の間のエネルギー準位の差に相当するエネルギーを熱や光として放出し、電流の担体(通常キャリアと呼ぶ)としての存在は消滅する。このことをキャリアの再結合と呼ぶ。 正孔は、伝導電子と同様に、電荷担体として振舞うことができる。正孔による電気伝導性をp型という。半導体にアクセプターをドーピングすると、価電子が熱エネルギーによってアクセプタ準位に遷移し、正孔の濃度が大きくなる。また伝導電子の濃度に対して正孔の濃度が優越する半導体をp型半導体と呼ぶ。 一般に正孔のドリフト移動度(あるいは単に移動度)は自由電子のそれより小さく、シリコン結晶中では電子のおよそ1/3になる。なお、これによって決まるドリフト速度は個々の電子や正孔の持つ速度ではなく、平均の速度であることに注意が必要である。 価電子帯の頂上ではE-k空間上で形状の異なる複数のバンドが縮退しており、それに対応して正孔のバンドも有効質量の異なる重い正孔(heavy hole)と軽い正孔(light hole)のバンドに分かれる。またシリコンなどスピン軌道相互作用が小さい元素においてはスピン軌道スプリットオフバンド(スピン分裂バンド)もエネルギー的に近く(Δ.

新しい!!: 電気抵抗と正孔 · 続きを見る »

温度

温度(おんど、temperature)とは、温冷の度合いを表す指標である。二つの物体の温度の高低は熱的な接触により熱が移動する方向によって定義される。すなわち温度とは熱が自然に移動していく方向を示す指標であるといえる。標準的には、接触により熱が流出する側の温度が高く、熱が流入する側の温度が低いように定められる。接触させても熱の移動が起こらない場合は二つの物体の温度が等しい。 統計力学によれば、温度とは物質を構成する分子がもつエネルギーの統計値である。熱力学温度の零点(0ケルビン)は絶対零度と呼ばれ、分子の運動が静止する状態に相当する。ただし絶対零度は極限的な状態であり、有限の操作で物質が絶対零度となることはない。また、量子的な不確定性からも分子運動が止まることはない。 温度はそれを構成する粒子の運動であるから、化学反応に直結し、それを元にするあらゆる現象における強い影響力を持つ。生物にはそれぞれ至適温度があり、ごく狭い範囲の温度の元でしか生存できない。なお、日常では単に温度といった場合、往々にして気温のことを指す場合がある。.

新しい!!: 電気抵抗と温度 · 続きを見る »

指数関数的減衰

指数関数的減衰(しすうかんすうてきげんすい、exponential decay)、または指数的減衰とは、ある量が減少する速さが減少する量に比例することである。数学的にいえば、この過程は微分方程式 によって表される。ここでN (t) は時刻t における減衰する量であり、λは崩壊定数と呼ばれる正の数である。崩壊定数の単位は s-1 である。 この微分方程式を解くと(詳細は後述)、この現象は指数関数 によって表される。ここでN0.

新しい!!: 電気抵抗と指数関数的減衰 · 続きを見る »

時間

人類にとって、もともとは太陽や月の動きが時間そのものであった。 アイ・ハヌム(紀元前4世紀~紀元前1世紀の古代都市)で使われていた日時計。人々は日時計の時間で生きていた。 砂時計で砂の流れを利用して時間を計ることも行われるようになった。また砂時計は、現在というものが未来と過去の間にあることを象徴している。くびれた部分(現在)を見つめる。すると時間というのは上(未来)から流れてきて下(過去)へと流れてゆく流れ、と感じられることになる。 時間(じかん)は、出来事や変化を認識するための基礎的な概念である。芸術、哲学、自然科学、心理学などの重要なテーマとなっている。それぞれの分野で異なった定義がなされる。.

新しい!!: 電気抵抗と時間 · 続きを見る »

ここにリダイレクトされます:

交流抵抗抵抗値電気低抗値

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »