ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
ダウンロード
ブラウザよりも高速アクセス!
 

転位反応

索引 転位反応

転位反応(てんいはんのう、英語:rearrangement reaction)とは、化合物を構成する原子または原子団(基)が結合位置を変え、分子構造の骨格変化を生じる化学反応の総称である。一方、原子または原子団(基)が骨格に変化を与えずに結合位置を変える化学反応(メトキシ基やアセチル基の分子内転移など)を転移反応とよぶ。 反応形式別に、自己の分子骨格内で基が移動する分子内転位(ぶんしないてんい、intramolecular rearrangement)、基が一度遊離して異なる分子にも移動しうるものを分子間転位(ぶんしかんてんい、intermolecular rearrangement)と呼ぶ。 また反応機構別に求核転位(求核反応)、求電子転位(求電子反応)、シグマトロピー転位(シグマトロピー反応)、ラジカル転位(ラジカル反応)と呼び分けられる。 異性化の多くはプロトン(水素イオン)の転位を反応機構とし、生体内では酵素(EC.5群に属する異性化酵素)によって頻繁に転位反応が起こされている(注:EC.2群に属する転移酵素は分子内でなく分子間で原子団を移すものである)。.

37 関係: 反応機構化合物化学反応マイヤー・シュスター転位バンバーガー転位バイヤー・ビリガー酸化メトキシ基ラジカル (化学)ロッセン転位ワーグナー・メーヤワイン転位プメラー転位ピナコール転位デーキン反応フリース転位フリッツ・バッテンバーグ・ビーチェル転位ファヴォルスキー転位ホフマン転位ベンジル酸転位ベンジジン転位ベックマン転位アーント・アイシュタート合成アセチル基ウルフ転位エン反応クライゼン転位クルチウス転位コープ転位シュミット反応シグマトロピー転位ジエノン-フェノール転位スマイルス転位異性化EC番号酵素英語求核置換反応

化学において、基(き、group、radical)は、その指し示すものは原子の集合体であるが、具体的には複数の異なる概念に対応付けられているため、どの概念を指すものかは文脈に依存して判断される。 分子中に任意の境界を設定すると、原子が相互に共有結合で連結された部分構造を定義することができる。これは、基(または原子団)と呼ばれ、個々の原子団は「~基」(「メチル基」など)と命名される。 「基」という語は、上に述べた原子団を指す場合と、遊離基(またはラジカル)を意味する場合がある。後者の用語法は、日本語でかつて遊離基の個別名称を原子団同様に「~基」(「メチル基」など)としていたことに由来するが、現在ではほとんどの場合「ラジカル」、「遊離基」と呼ぶ。原語における経緯についてはラジカルの項に詳しい。以上、語義の変遷は、おおかた右図のようにまとめられる。 以下この記事では、原子団たる基(group)について述べる。.

新しい!!: 転位反応と基 · 続きを見る »

反応機構

化学において、反応機構(はんのうきこう、Reaction mechanism)は、全体の化学的変化を起こす段階を追った一続きのである。 反応機構は全体の化学反応の各段階で起こることを詳細に記述しようと試みる理論的な推論である。反応の詳細な段階はほとんどの場合において観測不可能である。推測反応機構はそれが熱力学的にもっともらしいという理由で選ばれ、単離した中間体または反応の定量的および定性的特徴から実験的に支持される。反応機構は個々の反応中間体、、遷移状態や、どの結合が(どの順番で)切れるか、どの結合が(どの順番で)形成されるか、も記述する。完全な機構はと触媒が使われた理由や、反応物および生成物で観察される立体化学、全ての生成物とそれぞれの量、についても説明しなければならない。 反応機構を図示するために描画法が頻繁に使われる。 反応機構は分子が反応する順番についても説明しなければならない。大抵、単段階変換に見える反応は実際には多段階反応である。.

新しい!!: 転位反応と反応機構 · 続きを見る »

化合物

化合物(かごうぶつ、chemical compound)とは、化学反応を経て2種類以上の元素の単体に生成することができる物質であり岩波理化学辞典(4版)、p.227、【化合物】、言い換えると2種類以上の元素が化学結合で結びついた純物質とも言える。例えば、水 (H2O) は水素原子 (H) 2個と酸素原子 (O) 1個からなる化合物である。水が水素や酸素とは全く異なる性質を持っているように、一般的に、化合物の性質は、含まれている元素の単体の性質とは全く別のものである。 同じ化合物であれば、成分元素の質量比はつねに一定であり、これを定比例の法則と言い株式会社 Z会 理科アドバンスト 考える理科 化学入門、混合物と区別される。ただし中には結晶の不完全性から生じる岩波理化学辞典(4版)、p.1109、【不定比化合物】不定比化合物のように各元素の比が自然数にならないが安定した物質もあり、これらも化合物のひとつに含める。 化合物は有機化合物か無機化合物のいずれかに分類されるが、その領域は不明瞭な部分がある。.

新しい!!: 転位反応と化合物 · 続きを見る »

化学反応

化学反応(かがくはんのう、chemical reaction)は、化学変化の事、もしくは化学変化が起こる過程の事をいう。化学変化とは1つ以上の化学物質を別の1つ以上の化学物質へと変化する事で、反応前化学物質を構成する原子同士が結合されたり、逆に結合が切断されたり、あるいは化学物質の分子から電子が放出されたり、逆に電子を取り込んだりする。広義には溶媒が溶質に溶ける変化や原子のある同位体が別の同位体に変わる変化、液体が固体に変わる変化MF2等も化学変化という。 化学変化の前後では、化学物質の分子を構成する原子の結合が変わって別の分子に変化する事はあるが、原子そのものが別の原子番号の原子に変わる事はない(ただし原子間の電子の授受や同位体の変化はある)。この点で原子そのものが別の原子に変化する原子核反応とは大きく異なる。 化学反応では反応前の化学物質を反応物(reactant)、反応後の化学物質を生成物(product)といい、その過程は化学反応式で表記される。例えば反応物である(塩酸)とNaOH(水酸化ナトリウム)が化学反応して生成物であるH2O(水分子)とNaCl(食塩)ができあがる状況を示した化学反応式は と表記される。.

新しい!!: 転位反応と化学反応 · 続きを見る »

マイヤー・シュスター転位

マイヤー・シュスター転位(マイヤー・シュスターてんい、Meyer-Schuster rearrangement)とは、有機化学における人名反応のひとつで、酸の作用によりプロパルギルアルコールの誘導体が α,β-不飽和ケトンに異性化する反応のこと。1922年、Kurt H. Meyer と Kurt Schuster, K. によって最初に報告された。 酸として、酢酸、硫酸、塩酸などが用いられる。反応機構は Edens らによって調べられた。 アセチレンが末端 (R.

新しい!!: 転位反応とマイヤー・シュスター転位 · 続きを見る »

バンバーガー転位

バンバーガー転位(バンバーガーてんい、 Bamberger rearrangement)とは、有機化学における転位反応の一種。N-フェニルヒドロキシアミンに強い鉱酸を作用させ、4-アミノフェノールを得る反応である。 バンバーガー転位 この反応は、1894年に E. Bamberger により最初の報告がなされた バンバーガー転位の機構は、下の図のように考えられている。 N-フェニルヒドロキシアミン (1) あるいは共役酸の 2 から、酸素がプロトン化された 3 が生じ、そこから脱水が起こるとニトレニウムイオン 4 となる(ニトレニウムとは、2配位の窒素カチオンのこと)。4が発生すると、その芳香環のパラ位へ水分子が速やかに付加し、生成物の 4-アミノフェノール (5) となる。すなわち、この転位反応は分子間転位であり、生成物のヒドロキシ基は、基質 1 の窒素上にあったヒドロキシ基とは異なる。.

新しい!!: 転位反応とバンバーガー転位 · 続きを見る »

バイヤー・ビリガー酸化

バイヤー・ビリガー酸化(—さんか、Baeyer-Villiger oxidation)は、ケトンと過カルボン酸を反応させるとケトンのカルボニル基の隣りに酸素原子が挿入されてカルボン酸エステルが得られる酸化反応のことである。 バイヤー・ビリガー反応(—はんのう)、バイヤー・ビリガー転位(—てんい)とも呼ばれる。 アドルフ・フォン・バイヤーとヴィクトル・ヴィリガー (Victor Villiger) によって1899年に報告された。 反応の機構は.

新しい!!: 転位反応とバイヤー・ビリガー酸化 · 続きを見る »

メトキシ基

メトキシ基(—き、methoxy group)とは、有機化学において構造式が CH3O- と表される1価の官能基。メチルオキシ基。アルコキシ基の一種。.

新しい!!: 転位反応とメトキシ基 · 続きを見る »

ラジカル (化学)

ラジカル (radical) は、不対電子をもつ原子や分子、あるいはイオンのことを指す。フリーラジカルまたは遊離基(ゆうりき)とも呼ばれる。 また最近の傾向としては、C2, C3, CH2 など、不対電子を持たないがいわゆるオクテット則を満たさず、活性で短寿命の中間化学種一般の総称として「ラジカル(フリーラジカル)」と使う場合もある。 通常、原子や分子の軌道電子は2つずつ対になって存在し、安定な物質やイオンを形成する。ここに熱や光などの形でエネルギーが加えられると、電子が励起されて移動したり、あるいは化学結合が二者に均一に解裂(ホモリティック解裂)することによって不対電子ができ、ラジカルが発生する。 ラジカルは通常、反応性が高いために、生成するとすぐに他の原子や分子との間で酸化還元反応を起こし安定な分子やイオンとなる。ただし、1,1-ジフェニル-2-ピクリルヒドラジル (DPPH) など、特殊な構造を持つ分子は安定なラジカルを形成することが知られている。 多くのラジカルは電子対を作らない電子を持つため、磁性など電子スピンに由来する特有の性質を示す。このため、ラジカルは電子スピン共鳴による分析が可能である。さらに、結晶制御により分子間でスピンをうまく整列させ、極低温であるが強磁性が報告されたラジカルも存在する。1991年、木下らにより報告されたp-Nitrophenyl nitronylnitroxide (NPNN)が、最初の有機強磁性体の例である (Tc.

新しい!!: 転位反応とラジカル (化学) · 続きを見る »

ロッセン転位

ッセン転位(ロッセンてんい、Lossen rearrangement)とは有機化学における転位反応の一種で、下の式のようにヒドロキサム酸 1 が 塩化パラトルエンスルホニル のような脱水性の試薬と縮合して 2 のような O-置換体となり、それが自発的に転位してイソシアネート 3 へと変わる反応である。 ヒドロキサム酸は通常、対応するカルボン酸エステルとヒドロキシルアミンから合成される。.

新しい!!: 転位反応とロッセン転位 · 続きを見る »

ワーグナー・メーヤワイン転位

ワーグナー・メーヤワイン転位(-てんい、Wagner-Meerwein rearrangement)とは、有機化学の反応のうち、カルボカチオンでの水素原子や炭化水素基の1,2-転位反応のことである。 カルボカチオン転位(carbocation rearrangement)とも呼ばれる。 ワーグナー・メーヤワイン転位は、カチオン中心の炭素にその隣接する炭素原子上の炭化水素基が1,2-転位して、隣接する炭素にカチオン中心が移動する反応である。 この転位は可逆反応であるため、転位の方向はカルボカチオンが安定となる方へ転位反応が進行していくことになる。 カルボカチオンの安定性は第1級、第2級、第3級の順に高くなるため、第1級→第2級→第3級というように転位反応が進行していく。 また転位する炭化水素基は電子供与性が高いものほど転位しやすい。 π電子系であるフェニル基やビニル基がもっとも転位しやすく、第3級アルキル基、第2級アルキル基、第1級アルキル基、水素の順に転位しにくくなる。 この転位の例は、SN1反応により炭素鎖から脱離基が脱離してカルボカチオンが生成したときに見られる。 例えば、3-メチル-2-ブタノールに対して塩化水素を反応させてSN1反応を行なった場合、生成物は本来ならもともとヒドロキシル基があった2位の炭素がクロロ化された 2-クロロ-3-メチルブタンとなるはずが、実際は3位の炭素がクロロ化された 2-クロロ-2-メチルブタンとなる。(注:IUPAC命名法では塩素原子の位置が変わることによって位置番号の付け方が変わるため、もともと3位であった炭素が2位に変わっている。) この反応機構は以下のようになっている。 まず、プロトンがヒドロキシル基に付加した後水分子が脱離して、まず初めに2位の炭素がカチオン中心となる。 これは第二級カルボカチオンである。 このカチオンにおいて、3位の炭素上の水素が2位へと転位して3位の炭素がカチオン中心となれば、これは第三級カルボカチオンとなり、より安定なカルボカチオンとなることができる。 そのため、この方向にワーグナー・メーヤワイン転位が進行する。 そして転位が起こった結果、生成するカルボカチオンに塩化物イオンが付加することで3位がクロロ化された生成物が得られる。 1899年にゲオルク・ワーグナー(Georg Egorovich Wagner)が、カンフェンヒドロクロリド(2-Chloro-2,3,3-trimethylbicycloheptane)からイソボルニルクロリド(2-Chloro-1,7,7-trimethylbicycloheptane)への転位反応としてこの反応を発見した。その後、1914年にが他の化合物でも同様の反応が広く起こることを示し、カルボカチオンを経由する機構を提示したのでこの2人の名が付けられている。.

新しい!!: 転位反応とワーグナー・メーヤワイン転位 · 続きを見る »

プメラー転位

プメラー転位(—てんい、Pummerer rearrangement)は、有機化学における人名反応の一種で、アルキルスルホキシドが、求電子剤の作用によりα-置換スルフィドに変わる転位反応のことを指す。この反応は 1909年、R.

新しい!!: 転位反応とプメラー転位 · 続きを見る »

ピナコール転位

ピナコール転位(ピナコールてんい、pinacol rearrangement)は 1,2-ジオールが酸触媒下に脱水と同時に置換基の転位を起こしカルボニル化合物を与える反応のことである。 代表的な例としてピナコール(2,3-ジメチル-2,3-ブタンジオール)からピナコロン(またはピナコリン、3,3-ジメチル-2-ブタノン)への転位が知られるため、ピナコール転位あるいはピナコロン転位、ピナコリン転位、ピナコール-ピナコロン転位の名で呼ばれる。カルベニウムイオン(カルボカチオン)の 1,2-転位を転位の鍵段階とし、ワーグナー・メーヤワイン転位の一種である。.

新しい!!: 転位反応とピナコール転位 · 続きを見る »

デーキン反応

デーキン反応(—はんのう、Dakin reaction)とは、有機化学における合成反応の一種で、フェノール類の芳香環上に置換したアルデヒド基(またはケト基)が、塩基の存在下に過酸化水素と作用して 2価のフェノール類とカルボン酸を与える反応である。デーキン酸化とも呼ばれる。 この反応ではまず、過酸化水素から発生するヒドロペルオキシドアニオン (HOO&minus) がカルボニル基の炭素に求核的に付加する。そうして生成する中間体 (Ar-C(O&minus)(OOH)R) の上でアリール基(Ar、芳香環)の転位が起こり、いったんエステル (ArOC(.

新しい!!: 転位反応とデーキン反応 · 続きを見る »

フリース転位

フリース転位(フリースてんい、Fries rearrangement)はフェニルエステルから芳香族ヒドロキシケトンへの転位反応であるSmith, M. B.; March, J. Advanced Organic Chemistry, 5th Ed.; John Wiley & Sons: Chichester, 2001; pp 725–727.

新しい!!: 転位反応とフリース転位 · 続きを見る »

フリッツ・バッテンバーグ・ビーチェル転位

フリッツ・バッテンバーグ・ビーチェル転位(フリッツ・バッテンバーグ・ビーチェルてんい、Fritsch-Buttenberg-Wiechell rearrangement)は、1,1-ジアリール-2-ブロモ-アルケンをアルコキシドのような強塩基の存在下で1,2-ジアリール-アルキンへ転位する化学反応であり、Paul Ernst Moritz Fritsch (1859–1913)、Wilhelm Paul Buttenberg、Heinrich G. Wiechellによって名付けられた。 この転位反応はアルキル基でも可能である。.

新しい!!: 転位反応とフリッツ・バッテンバーグ・ビーチェル転位 · 続きを見る »

ファヴォルスキー転位

ファヴォルスキー転位(-てんい、Favorskii rearrangement)はα位に脱離基を持つケトンが塩基の存在下にカルボン酸誘導体に変化する転位反応のことである。 1913年にアレクセイ・ファヴォルスキーによってカルボニル基のα位が臭素で二置換されているケトンが水酸化ナトリウム水溶液中で転位反応を起こしたα,β-不飽和カルボン酸に変化することが報告された。臭素のような脱離基は1つでもこの反応は進行し、この場合には飽和のカルボン酸が得られる。例えば2-ブロモシクロヘキサノンからはシクロペンタンカルボン酸が生成する。また塩基としてアルコキシドを用いた場合にはエステルが、アミンを用いた場合にはアミドが生成する。β-ハロケトンを用いた同様の反応はホモファヴォルスキー転位 (homo-Favorskii rearrangement) と呼ばれる。 この反応は直接的な合成が難しい炭素環骨格を持つ化合物の合成に応用される。 著名な例としてはキュバンの合成に用いられた。.

新しい!!: 転位反応とファヴォルスキー転位 · 続きを見る »

ホフマン転位

ホフマン転位(ホフマンてんい、Hofmann rearrangement)はカルボン酸アミドを臭素のアルカリ水溶液で処理すると、炭素数が1個減少したアミンが得られる転位反応のことである。1871年にアウグスト・ヴィルヘルム・フォン・ホフマンによって報告された。 反応は以下のような機構によって進行する。.

新しい!!: 転位反応とホフマン転位 · 続きを見る »

ベンジル酸転位

ベンジル酸転位(ベンジルさんてんい、benzilic acid rearrangement)とは、有機化学における転位反応のひとつで、ベンジルに水酸化カリウムを作用させるとフェニル基が 1,2-転位を起こしてベンジル酸のカリウム塩を与える反応である。最初の研究はユストゥス・フォン・リービッヒによって1838年に示された。脂肪族の 1,2-ジケトンを基質として α-ヒドロキシカルボン酸を与えた例も知られる。.

新しい!!: 転位反応とベンジル酸転位 · 続きを見る »

ベンジジン転位

ベンジジン転位(ベンジジンてんい、benzidine rearrangement)とは、有機化学における転位反応のひとつ。1,2-ジフェニルヒドラジンが酸の作用により転位してベンジジンとなる反応。アウグスト・ヴィルヘルム・フォン・ホフマンによって 1863年に報告された。 本反応は N,N-結合の切断と C,C-結合の生成が協奏的に起こる -シグマトロピー転位の形式で進むとされている。 パラ位に置換基を持つジフェニルヒドラジン誘導体を基質とした場合は、p-アミノジフェニルアミンが生成する(セミジン転位、semidine rearrangement)。.

新しい!!: 転位反応とベンジジン転位 · 続きを見る »

ベックマン転位

ベックマン転位(—てんい、Beckmann rearrangement)は、ケトンから作られたオキシムからN-置換アミドが得られる転位反応のことである。 エルンスト・オットー・ベックマンによって1886年に報告された。.

新しい!!: 転位反応とベックマン転位 · 続きを見る »

アーント・アイシュタート合成

アルント・アイステルト合成(—ごうせい、Arndt-Eistert synthesis)とは、有機化学における合成法のひとつで、カルボン酸を、メチレン基がひとつ増えた同族体 (homologue) のカルボン酸に変換する手法。α-アミノ酸から β-アミノ酸を得るための一般的な方法である。 アルント・アイステルト合成では、まずカルボン酸を塩化チオニルなどでカルボン酸塩化物とした後にジアゾメタンと反応させ、ジアゾ化されたケトンを調製する。水などの求核剤の共存下に、酸化銀(I) (Ag2O) を作用させると、メチレン基が増えたカルボン酸が得られる 。 ジアゾメタンの毒性と爆発性を回避するため、より安全なトリメチルシリルジアゾメタンを用いた手法が報告されている 。.

新しい!!: 転位反応とアーント・アイシュタート合成 · 続きを見る »

アセチル基

アセチル基(アセチルき、acetyl group)はアシル基の一種で、酢酸からヒドロキシ基を取り除いたものにあたる1価の官能基。構造式は CH3CO− と表され、しばしば Ac と略記される。生体内ではエステルやアミドとして盛んに現れる。 炭素数2。.

新しい!!: 転位反応とアセチル基 · 続きを見る »

ウルフ転位

ウルフ転位(ウルフてんい、Wolff rearrangement)とは、有機化学における転位反応のひとつで、α-ジアゾケトンからケテンが生成する反応である。1912年に L. Wolff により報告された。 ウルフ転位 生成物であるケテンに水やアルコールが求核付加するとカルボン酸やエステルが生成する。.

新しい!!: 転位反応とウルフ転位 · 続きを見る »

エン反応

エン反応(-はんのう、Ene reaction)とは、アリル位に水素をもつアルケンと、アルケン、カルボニル基などの2π電子系との間でσ結合の形成を伴う水素移動が起こる反応のことである。 この反応はディールス・アルダー反応の基質のジエンのひとつのπ結合をσ結合に置き換えたものと考えられる。 そのため、ディールス・アルダー反応にならい、基質となるアルケンをエン (ene)、2π電子系を親エン体あるいは求エン体 (エノファイル、enophile) と呼ぶ。 アルケンを親エン体とするエン反応はクルト・アルダーによって報告されたため、特にアルダーのエン反応 (Alder's ene-reaction) と呼ばれる。 また、アルデヒド、特にホルムアルデヒドを親エン体とするエン反応はプリンス反応 (Prins reaction) の名で呼ばれることもある。 600px この反応はペリ環状反応の一種であり、反応中間体なしに水素移動とσ結合の形成が協奏的に進行する機構で起こると考えられている。 カルボニル基などのヘテロ原子を持つ親エン体への反応ではルイス酸を添加すると、その配位によりLUMOのエネルギー準位が低下するため反応が加速される。 しかし、この場合には段階的に反応が進行することもある。 また、アリル位に水素ではなく金属を持つアルケンを用いた場合、炭素-金属結合の切断を伴う金属移動が起こる。これを金属エン反応 (metallo-ene reaction) と呼ぶ。 これは求電子剤を反応させることで更なる反応に用いることができるため、有用な骨格形成法の一つである。 エン反応は可逆反応であり高温にすると逆反応が有利となる。この逆反応はレトロ-エン反応 (retro ene-reaction) と呼ばれる。 Category:転位反応 Category:炭素-炭素結合形成反応.

新しい!!: 転位反応とエン反応 · 続きを見る »

クライゼン転位

ライゼン転位(クライゼンてんい、Claisen Rearrangement)は、有機化学における人名反応のひとつ。アリルビニルエーテル構造を持つ化合物がγ,δ-不飽和カルボニル化合物に転位する反応である。 1912年にライナー・ルートヴィッヒ・クライゼン (Rainer Ludwig Claisen) によって報告された。 クライゼン転位は、アリル基と酸素との結合の切断、アリル基末端の炭素とビニル基末端の炭素との間の結合の生成、π結合の移動が反応中間体を経ずに一度に起こる。 すなわちペリ環状反応の一種であり、その中でも -シグマトロピー転位に属する反応である。 ビニルエーテル構造がフェノールエーテルの一部である場合もこの反応が進行する。 この場合、生成物のカルボニル化合物はシクロヘキサジエノン構造を持つ化合物であるが、これはケト-エノール互変異性により直ちにフェノール型構造へと異性化する。 反応の遷移状態はいす型シクロヘキサンに類似した構造をとっていると考えられており、それにより反応の立体選択性が説明されている。 また、アリルビニルエーテルの酸素を窒素に置換した形の N-アリルエナミン、硫黄に置換した形のアリルビニルスルフィドでも同様の反応が進行する。これらはそれぞれアザ (aza)-クライゼン転位、チア (thia)-クライゼン転位と呼ばれている。酸素を炭素に置換した形の化合物の同様の転位反応はコープ転位として知られている。 クライゼン転位にはいくつかの変法が知られている。以下にそれらについて記す。.

新しい!!: 転位反応とクライゼン転位 · 続きを見る »

クルチウス転位

ルチウス転位 (クルチウスてんい、Curtius rearrangement) は有機化学における転位反応の一つで、酸アジドを加熱することにより、窒素の発生を伴いながらイソシアネートを生成する反応である。テオドール・クルチウスが1890年に報告した。 かつては酸アジドの合成法として酸塩化物とアジ化ナトリウムとの反応、酸ヒドラジドと亜硝酸誘導体との反応などが用いられていた。近年ではジフェニルリン酸アジド(DPPA)の開発により、単にカルボン酸とDPPAを混合して加熱するだけでよく、実験操作の安全性・簡便性は大幅に向上した。 クルチウス転位の生成物は反応性に富んだイソシアネートであり、これを酸で処理すれば一級アミンに、tert-ブチルアルコールやベンジルアルコールを加えればそれぞれBoc基、Z基で保護されたアミンがワンポットで得られてくる。 。 カルボン酸としては一級・二級・三級アルキルカルボン酸、アリールカルボン酸などが使用できる。この時立体化学は完全に保持され、カルボン酸から一炭素減少したアミンが得られることになる。他の方法では作りにくいアミンが合成できるため、合成法としての価値が高い。 クルチウス反応の機構は一般に、窒素分子 (N2) が脱離してニトレンが発生し、置換基(R)が転位する二段階機構、あるいは窒素分子の脱離と転位が協奏的に起こる一段階機構のいずれかである。.

新しい!!: 転位反応とクルチウス転位 · 続きを見る »

コープ転位

ープ転位の例 コープ転位(コープてんい、)は、1,5-ヘキサジエン構造を持つ物質の3,4位間の単結合が開裂すると同時に1,6位間で単結合が形成され、それと同時に二重結合が移動して別の1,5-ヘキサジエンに異性化する-シグマトロピー転位である。 1940年にアーサー・コープらによってβ,γ-不飽和エステルをエノラートに変換してα位をアリル化することで得られるα-アリル-β,γ-不飽和エステルを加熱すると、γ-アリル-α,β-不飽和エステルに異性化することが報告された。この反応はクライゼン転位の基質のエーテル酸素をメチレン炭素に置き換えた反応に相当する。 生成物も出発物と同様の1,5-ヘキサジエン構造をもつため、可逆反応となりうる。実際に可逆反応となるかは出発物と生成物の構造に依存する。3-メチル-1,5-ヘキサジエンのような化合物では出発物と生成物の間に大きなエネルギー差がないため可逆反応となり、出発物と生成物の混合物が得られる。ブルバレンのように分子内で可逆なコープ転位を繰り返している化合物も知られている。逆にcis-1,2-ジビニルシクロプロパンのような化合物では出発物が3員環の大きなひずみによりエネルギーが高いため、不可逆的に転位が進行する。.

新しい!!: 転位反応とコープ転位 · 続きを見る »

シュミット反応

ュミット反応(シュミットはんのう、Schmidt reaction)は化合物を酸性条件下においてアジ化水素で処理した際に起こる化学反応のことである。いずれも転位反応であるため、シュミット転位(シュミットてんい、Schmidt rearrangement)とも呼ばれる。 この反応には多くのパターンがある。 カルボン酸とアジ化水素を反応させるとカルボン酸アジドを経てイソシアン酸エステルが得られる。シュミット反応と言った場合には、この反応を指すことがもっとも多い。クルチウス転位と関連する反応であるが、カルボン酸から直接イソシアン酸エステルが得られる点が異なる。この点でジフェニルリン酸アジドを用いるクルチウス転位の変法は、シュミット反応に近い。 ケトンとアジ化水素を反応させるとカルボニル基の隣りにNHが挿入されたカルボン酸アミドが得られる。この反応はベックマン転位と類似している。反応機構はカルボニル基にアジ化水素が求核付加した後、ヒドロキシ基が脱離することでベックマン転位でのオキシムに対応するR2C.

新しい!!: 転位反応とシュミット反応 · 続きを見る »

シグマトロピー転位

3,3-シグマトロピー転位の一例(クライゼン転位) シグマトロピー転位(シグマトロピーてんい、sigmatropic rearrangement)はπ電子系に隣接する単結合が切断されると同時に、π電子系上で新しい単結合が生成する形式の転位反応である。単結合の生成と切断に伴って多重結合の移動も伴う。これらの結合の変化は反応中間体を持たない一段階の反応で、環状の遷移状態を経て起こる。すなわちペリ環状反応の一種である。.

新しい!!: 転位反応とシグマトロピー転位 · 続きを見る »

ジエノン-フェノール転位

ノン-フェノール転位(ジエノンフェノールてんい、dienone-phenol rearrangement)とは、有機化学における転位反応の一種で、酸触媒により環状ジエノンがフェノール類に変わる反応。 ジエノンフェノール転位の基質は、4,4-ジアルキル-2,5-シクロヘキサジエン-1-オンの誘導体である。これに酸触媒を作用させると 4位のアルキル基の転位が起こり、3,4-ジアルキルフェノール誘導体を与える(下式)。 この反応はまず、カルボニル基の酸素にプロトンが付加してペンタジエニルカチオンを生じ、続いて6員環の芳香族化と 4位の立体障害の解消が駆動力となりアルキル基の転位が進行する。一般に、硫酸や濃塩酸など、ある程度強い酸を必要とする。 19世紀末に がデスモトロポサントニンに変わる反応が A.Andreocci により報告された。これが本反応の最初の報告とされる。 3,4,4,5-テトラメチルシクロ-2,5-ヘキサジエン-1-オン(ペンギノンと呼ばれることもある)は本反応の基質となるべきジエノン骨格を有するが、3,5位のメチル基が4位のメチル基の転位を阻害するため、トリフルオロ酢酸を作用させてもフェノールには変わらないことが報告されている。.

新しい!!: 転位反応とジエノン-フェノール転位 · 続きを見る »

スマイルス転位

マイルス転位(スマイルスてんい、Smiles rearrangement)は、有機反応および転位反応の一つである。分子内芳香族求核置換反応に分類される。 Xはスルホン、スルフィド、エーテルなどアレーンから脱離できる任意の置換基。官能基鎖の末端のYはアルコールやアミン、チオールなどの求核性が強い基。 他の芳香族求核置換反応のようにオルト位の極性効果による活性化を必要とする。 トルース・スマイルス転位と呼ばれる改良型は、有機リチウムを使うことにより入ってくる求核性基の強い付加的活性を必要としない。この反応は、アリールスルホンからn-ブチルリチウムの作用によるスルフィン酸への変換によって実証された。 この反応はアルキルリチウムとそのオルト位のスルホンとの相互作用を必要とする。 概念的に関連する反応にチャップマン転位がある。 スマイルス転位のラジカル版が2015年にStephensonによって報告された。 林転位はスマイルス転位の陽イオン版と考えることができる。.

新しい!!: 転位反応とスマイルス転位 · 続きを見る »

異性化

性化(Isomerization)は、ある分子が原子の組成は全くそのままに、原子の配列が変化して別の分子に変換することである。これらの関連する分子のことは異性体と呼ぶ。ある条件下で自発的に異性化する分子もある。多くの異性体は、等しいかほぼ等しい結合エネルギーを持ち、そのためほぼ等量が存在する。これらは比較的自由に相互変換でき、即ち2つの異性体間のエネルギー障壁は高くはない。分子間で異性化が起きると、転位反応とみなせる。 有機金属化合物の異性化の例には、結合異性からのデカフェニルフェロセンの生成がある。 Formation of decaphenylferrocene from its linkage isomer.

新しい!!: 転位反応と異性化 · 続きを見る »

EC番号

EC番号(酵素番号、Enzyme Commission numbers)は酵素を整理すべく反応形式に従ってECに続く4組の数字で表したもの。 国際生化学連合(現在の国際生化学分子生物学連合)の酵素委員会によって1961年に作られた。.

新しい!!: 転位反応とEC番号 · 続きを見る »

酵素

核酸塩基代謝に関与するプリンヌクレオシドフォスフォリラーゼの構造(リボン図)研究者は基質特異性を考察するときに酵素構造を抽象化したリボン図を利用する。 酵素(こうそ、enzyme)とは、生体で起こる化学反応に対して触媒として機能する分子である。酵素によって触媒される反応を“酵素的”反応という。このことについて酵素の構造や反応機構を研究する古典的な学問領域が、酵素学 (こうそがく、enzymology)である。.

新しい!!: 転位反応と酵素 · 続きを見る »

英語

アメリカ英語とイギリス英語は特徴がある 英語(えいご、)は、イ・ヨーロッパ語族のゲルマン語派に属し、イギリス・イングランド地方を発祥とする言語である。.

新しい!!: 転位反応と英語 · 続きを見る »

求核置換反応

求核置換反応(きゅうかくちかんはんのう)とは、反応の中心となる求電子剤に対して求核剤が求核攻撃し、脱離基が脱離する反応。求核置換反応の生成物は、求電子剤と求核剤の結合物と脱離した脱離基である。 本項目では、脂肪族炭素上における求核置換反応を扱う。sp3炭素上の置換反応の場合、反応の形態によって SN2反応 と SN1反応 などが知られる。芳香族炭素上の反応は芳香族求核置換反応を、カルボン酸誘導体の置換反応は求核アシル置換反応を参照のこと。.

新しい!!: 転位反応と求核置換反応 · 続きを見る »

ここにリダイレクトされます:

転移反応

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »