ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
無料
ブラウザよりも高速アクセス!
 

軌道速度

索引 軌道速度

一般に惑星、衛星、人工衛星または連星などの物体の軌道速度(きどうそくど)とは、系における普通はより質量の大きな物体の重心の周りで軌道に乗る速度のことをあらわす。平均的な軌道速度や、全周を平均しての軌道速度か、あるいは軌道のある地点における速度である瞬間軌道速度について言及するのに用いうる言葉である。 任意の位置における軌道速度はその位置での中心の物体からの距離と軌道エネルギーから求めることができる。軌道エネルギーは位置とは無関係に決まり、その力学的エネルギーは全エネルギーから位置エネルギーを引いたものである。 それにより、天体力学の標準的仮定の元で軌道速度(v\)は.

19 関係: 力学的エネルギー万有引力定数人工衛星位置エネルギーヨハネス・ケプラー初等関数ケプラーの法則衛星角運動量質量軌道 (力学)軌道長半径近点・遠点重心離心率連星楕円積分楕円軌道惑星

力学的エネルギー

力学的エネルギー(りきがくてきエネルギー、mechanical energy)とは、運動エネルギーと位置エネルギー(ポテンシャル)の和のことを指す。 保存力の場での質点の運動では力学的エネルギー(運動エネルギーと位置エネルギー(ポテンシャル)の和)が一定となる。これを、力学的エネルギー保存の法則(力学的エネルギー保存則)と言う。 これを式で書くと次のようになる。ただし、運動エネルギーを K、ポテンシャルを U、力学的エネルギーを E とする。 一般にこれが保存するとき(即ち、保存力のみが仕事をし、非保存力が仕事をしないとき)によく使われる概念である。エネルギーが保存する場合、エネルギーの総和は初期条件で決まる。運動エネルギー K は、 なので、 となり、ポテンシャルの範囲が決まってしまう。ポテンシャルは位置に依存する量なので、これは運動の領域が決まることになる。ポテンシャルの概形が分かれば運動の様子がある程度推測できる。例えば、調和振動のポテンシャルは、 である。(x0 は振動中心の位置ベクトル)これは変位の二乗の形になっている。これを知っているならば、ポテンシャルの底が x2 の形になっている場合は単振動をすることが分かる。単振り子のポテンシャルは三角関数で書ける。 十分に振幅が小さいときには単振動で近似できることが分かる。 力学的エネルギーは、熱力学での内部エネルギー(摩擦などを通してやりとりされる)や他のエネルギーに変わりうる。この場合、力学的エネルギーの保存は成立しなくなるが、エネルギー全体としては保存している。つまりこの場合は、より広義の意味でエネルギーは保存している(→エネルギー保存の法則)。.

新しい!!: 軌道速度と力学的エネルギー · 続きを見る »

万有引力定数

万有引力定数(ばんゆういんりょくていすう)あるいは(ニュートンの)重力定数(じゅうりょくていすう、(Newtonian) constant of gravitation)とは、重力相互作用の大きさを表す物理定数である。アイザック・ニュートンの万有引力の法則において導入された。記号は一般に で表される。 ニュートンの万有引力理論において、それぞれ 、 の質量を持つ2つの物体が、距離 だけ離れて存在しているとき、これらの間に働く万有引力 は となる。このときの比例係数 が万有引力定数である。SIに基づいて、質量 、 にキログラム(kg)、長さ にメートル(m)、力 にニュートン(N、これは に等しい)を用いれば、万有引力定数 の単位は となる。 アインシュタインの一般相対性理論においては、ニュートンの重力理論に対する修正と拡張が為され、一般相対性理論の基礎方程式であるアインシュタイン方程式においても比例係数としてこの重力定数が現れる。.

新しい!!: 軌道速度と万有引力定数 · 続きを見る »

人工衛星

GPS衛星の軌道アニメーション 人工衛星(じんこうえいせい)とは、惑星、主に地球の軌道上に存在し、具体的な目的を持つ人工天体。地球では、ある物体をロケットに載せて第一宇宙速度(理論上、海抜0 mでは約 7.9 km/s.

新しい!!: 軌道速度と人工衛星 · 続きを見る »

位置エネルギー

位置エネルギー(いちエネルギー)とは、物体が「ある位置」にあることで物体にたくわえられるエネルギーのこと。力学でのポテンシャルエネルギー(ポテンシャルエナジー、英:potential energy)と同義であり、主に教育の分野でエネルギーの概念を「高さ」や「バネの伸び」などと結び付けて説明するために導入される用語である。 位置エネルギーが高い状態ほど、不安定で、動き出そうとする性質を秘めているといえる。力との関係や数学的な詳細についてはポテンシャルに回し、この項目では具体的な例を挙げて説明する。.

新しい!!: 軌道速度と位置エネルギー · 続きを見る »

ヨハネス・ケプラー

ヨハネス・ケプラー(Johannes Kepler、1571年12月27日 - 1630年11月15日)はドイツの天文学者。天体の運行法則に関する「ケプラーの法則」を唱えたことでよく知られている。理論的に天体の運動を解明したという点において、天体物理学者の先駆的存在だといえる。一方で数学者、自然哲学者、占星術師という顔ももつ。欧州補給機(ATV)2号機、アメリカ航空宇宙局の宇宙望遠鏡の名前に彼の名が採用されている。.

新しい!!: 軌道速度とヨハネス・ケプラー · 続きを見る »

初等関数

初等関数(しょとうかんすう、)とは、実数または複素数の1変数関数で、代数関数、指数関数、対数関数、三角関数、逆三角関数および、それらの合成関数を作ることを有限回繰り返して得られる関数のことである。ガンマ関数、楕円関数、ベッセル関数、誤差関数などは初等関数でない。初等関数のうちで代数関数でないものを初等超越関数という。双曲線関数やその逆関数も初等関数である。 初等関数の導関数はつねに初等関数になるが、初等関数の不定積分や初等関数を用いた微分方程式の解なども一般に初等関数にはならない。例えば、次の二つの不定積分 f(x).

新しい!!: 軌道速度と初等関数 · 続きを見る »

ケプラーの法則

プラーの法則(ケプラーのほうそく)は、1619年にヨハネス・ケプラーによって発見された惑星の運動に関する法則である。.

新しい!!: 軌道速度とケプラーの法則 · 続きを見る »

衛星

主要な衛星の大きさ比較 衛星(えいせい、natural satellite)は、惑星や準惑星・小惑星の周りを公転する天然の天体。ただし、惑星の環などを構成する氷や岩石などの小天体は、普通は衛星とは呼ばれない。.

新しい!!: 軌道速度と衛星 · 続きを見る »

角運動量

角運動量(かくうんどうりょう、)とは、運動量のモーメントを表す力学の概念である。.

新しい!!: 軌道速度と角運動量 · 続きを見る »

質量

質量(しつりょう、massa、μᾶζα、Masse、mass)とは、物体の動かしにくさの度合いを表す量のこと。.

新しい!!: 軌道速度と質量 · 続きを見る »

軌道 (力学)

2つの異なる質量の物体が、同じ重心の周りの軌道を回っている 軌道(きどう、orbit)とは力学において、ある物体が重力などの向心力の影響を受けて他の物体の周囲を運動する経路を指す。.

新しい!!: 軌道速度と軌道 (力学) · 続きを見る »

軌道長半径

軌道長半径(きどうちょうはんけい、英語:semi-major axis)とは、幾何学において楕円や双曲線のパラメータを表す数である。.

新しい!!: 軌道速度と軌道長半径 · 続きを見る »

近点・遠点

近地点と遠地点の位置関係 近点・遠点(きんてん・えんてん、periapsis and apoapsis) とは、軌道運動する天体が、中心天体の重力中心に最も近づく位置と、最も遠ざかる位置のことである。両者を総称して軌道極点またはアプシス(apsis) と言う。 特に、中心天体が太陽のときは近日点・遠日点(きんじつてん・えんじつてん、perihelion and aphelion )、主星が地球のときは近地点・遠地点(きんちてん・えんちてん、perigee and apogee )、連星系では近星点・遠星点(きんせいてん・えんせいてん、periastron and apastron)と言う。地球を周回する人工衛星については英単語のままペリジー・アポジーとも言う。主星が惑星の場合、例えば木星の衛星や木星を周回する探査機(ジュノーなど)の軌道の木星に対する近点・遠点は近木点・遠木点(きんもくてん・えんもくてん、perijove and apojove)、土星ならば近土点・遠土点(きんどてん・えんどてん、perichron and apochron)と表現することもある。 中心天体の周りを周回する天体は楕円軌道を取るが、中心天体は楕円の中心ではなく、楕円の長軸上にふたつ存在する焦点のいずれかに位置する。このため周回する天体は中心天体に対して、最も接近する位置(近点)と最も遠ざかる位置(遠点)を持つことになる。遠点・近点および中心天体の重力中心は一直線をなし、この直線は楕円の長軸に一致する。 中心天体の重力中心から近点までの距離を近点距離(近日点距離、近地点距離)、遠点までの距離を遠点距離(遠日点距離、遠地点距離)といい、それぞれ軌道要素の1つである。軌道長半径、離心率、近点距離、遠点距離の4つの軌道要素のうち2つを指定すれば、軌道の2次元的な形状が決まる。通常、軌道長半径と離心率が使われるが、放物線軌道・双曲線軌道(特に、彗星の軌道)については通常の意味での軌道長半径を定義できないので、近点距離と離心率が使われる。なお、人工衛星については近地点高度・遠地点高度という言葉もあるが、これらは地球の海面(ジオイド)からの距離である。 他の天体による摂動、一般相対論的効果により、近点は(したがって遠点も)少しずつ移動することがある。これを近点移動(近日点移動、近地点移動)という。.

新しい!!: 軌道速度と近点・遠点 · 続きを見る »

重心

重心(じゅうしん、center of gravity)は、力学において、空間的広がりをもって質量が分布するような系において、その質量に対して他の物体から働く万有引力(重力)の合力の作用点である。重力が一様であれば、質量中心(しつりょうちゅうしん、center of mass)と同じであるためしばしば混同されており、本来は異なるのだが、当記事でも基本的には用語を混同したまま説明する(人工衛星の安定に関してなど、これらを区別して行う必要がある議論を除いて、一般にはほぼ100%混同されているためである)。 一様重力下で、質量分布も一様である(または図形の頂点に等質量が凝集している)ときの重心は幾何学的な意味での「重心」(幾何学的中心、)と一致する。より一般の状況における重心はの項を参照せよ。.

新しい!!: 軌道速度と重心 · 続きを見る »

離心率

離心率(りしんりつ)とは、円錐曲線(二次曲線)の特徴を示す数値のひとつである。.

新しい!!: 軌道速度と離心率 · 続きを見る »

連星

連星(れんせい、)とは2つの恒星が両者の重心の周りを軌道運動している天体である。双子星(ふたごぼし)とも呼ばれる。連星は、地球から遠距離にあると、一つの恒星と思われ、その後に連星である事が判明する場合もある。この2世紀間の観測で、肉眼で見える恒星の半数以上が連星である可能性が示唆されている。通常は明るい方の星を主星、暗い方を伴星と呼ぶ。また、3つ以上の星が互いに重力的に束縛されて軌道運動している系もあり、そのような場合にはn連星またはn重連星などと呼ばれる。 また、二重星という言葉も連星を示す場合が多い。しかし、実際には、複数の恒星が地球から見て、同じ方向に位置しており、「見かけ上、連星のように見える」場合を表す。それぞれの恒星の、地球からの距離は全く異なり、物理的にも何の関連性も無い。二重星は、距離が異なるので、光度の差から、年周視差や視線速度を正確に求める事が出来る。しかし、中にはアルビレオのように、二重星か真の連星かが分かっていないものもある。.

新しい!!: 軌道速度と連星 · 続きを見る »

楕円積分

以下の積分をそれぞれ、第一種、第二種、第三種の楕円積分(だえんせきぶん、elliptic integral)という。 F(x,k) &.

新しい!!: 軌道速度と楕円積分 · 続きを見る »

楕円軌道

楕円軌道 楕円軌道(だえんきどう、elliptical orbit)は、楕円形の軌道。 楕円は2定点 F, F からの距離の和が一定である点の集合。原点Oを中心とする楕円の方程式は: 天体の周回軌道はケプラーの第1法則により一般に楕円軌道をとる。 人工衛星の軌道の場合、利用上の便宜から円軌道をとる場合もあるが、これは楕円軌道の特別な場合となる。 楕円軌道にいる人工衛星は地表からの高度が軌道上の位置によって変化する。この場合、地球は楕円の焦点のひとつ(図の例では F)に位置する。決して楕円の図形的中心 O にくるわけではない。 地球から最も遠ざかった点を遠地点(アポジ、apogee)、最も近づいた地点を近地点(ペリジ、perigee)という。 楕円の扁平の度合いを表すパラメータとして離心率e を次のように定義する。 a を楕円の長半径(長径の半分)、b を短半径(短径の半分)として 図形的には、楕円の中心と焦点 F, F との距離 OF.

新しい!!: 軌道速度と楕円軌道 · 続きを見る »

惑星

惑星(わくせい、πλανήτης、planeta、planet)とは、恒星の周りを回る天体のうち、比較的低質量のものをいう。正確には、褐色矮星の理論的下限質量(木星質量の十数倍程度)よりも質量の低いものを指す。ただし太陽の周りを回る天体については、これに加えて後述の定義を満たすものだけが惑星である。英語 planet の語源はギリシア語のプラネテス(さまよう者、放浪者などの意。IPA: /planítis/ )。 宇宙のスケールから見れば惑星が全体に影響を与える事はほとんど無く、宇宙形成論からすれば考慮の必要はほとんど無い。だが、天体の中では非常に多種多様で複雑なものである。そのため、天文学だけでなく地質学・化学・生物学などの学問分野では重要な対象となっている別冊日経サイエンス167、p.106-117、系外惑星が語る惑星系の起源、Douglas N. C.Lin。.

新しい!!: 軌道速度と惑星 · 続きを見る »

ここにリダイレクトされます:

平均軌道速度

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »