ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
インストール
ブラウザよりも高速アクセス!
 

組合せ (数学)

索引 組合せ (数学)

数学において、組合せ(くみあわせ、combination, choose)とは、相異なる(あるいは区別可能な)いくつかの要素の集まりからいくつかの要素を(重複無く)選び出す方法である。あるいは選び出した要素をその“並べる順番の違いを区別せずに”並べたもののことである。組合せは組合せ論と呼ばれる数学の分野で研究される。卑近な例でいえば、デッキ(山札)から決まった数のカード(手札)を引くことや、ロトくじなどがその例である。.

26 関係: 単集合岩波書店二項定理二項係数伏見康治ライブラリパスカルの三角形オーム社カードゲーム元 (数学)置換 (数学)組合せ数学順列部分集合重複置換重複組合せ重複順列自然数GNU Multi-Precision Library河出書房新社漸化式濃度 (数学)有限集合日本数学会数学数字選択式全国自治宝くじ

単集合

数学における単集合(たんしゅうごう、singleton; 単元集合、単項集合、一元集合)あるいは単位集合()は、唯一の元からなる集合である。一つ組 (1-tuple) や単項列 (a sequence with one element) と言うこともできる。 例えば、 という集合は単集合である。.

新しい!!: 組合せ (数学)と単集合 · 続きを見る »

岩波書店

株式会社岩波書店(いわなみしょてん、Iwanami Shoten, Publishers. )は、日本の出版社。.

新しい!!: 組合せ (数学)と岩波書店 · 続きを見る »

二項定理

初等代数学における二項定理(にこうていり、binomial theorem)または二項展開 (binomial expansion) は二項式の冪の代数的な展開を記述するものである。定理によれば、冪 は の形の項の和に展開できる。ただし、冪指数 は を満たす非負整数で、各項の係数 は と に依存して決まる特定の正整数である。例えば の項の係数 は二項係数 \tbinom (.

新しい!!: 組合せ (数学)と二項定理 · 続きを見る »

二項係数

数学における二項係数(にこうけいすう、binomial coefficients)は二項展開において係数として現れる正の整数の族である。二項係数は二つの非負整数で添字付けられ、添字 を持つ二項係数はふつう \tbinom と書かれる(これは二項冪 の展開における の項の係数である。適当な状況の下で、この係数の値は \tfrac で与えられる)。二項係数を、連続する整数 に対する各行に を から まで順に並べて得られる三角形状の数の並びをパスカルの三角形と呼ぶ。 この整数族は代数学のみならず数学の他の多くの分野、特に組合せ論において現れる。-元集合から -個の元を(その順番を無視して)選ぶ方法が \tbinom nk 通りである。二項係数の性質を用いて、記号 \tbinom nk の意味を、もともとの および が なる非負整数であった場合を超えて拡張することが可能で、そのような場合もやはり二項係数と称する。.

新しい!!: 組合せ (数学)と二項係数 · 続きを見る »

伏見康治

伏見 康治(ふしみ こうじ、1909年6月29日 - 2008年5月8日)は日本の理論物理学者、理学博士。公明党参議院議員(1期)。正四位勲二等(没時)。 本来の仕事である物理学、特に統計力学の分野で大きな研究業績を上げた他、戦後日本の科学研究体制の確立と発展にも力を尽くし、原子力平和利用研究を推進、さらには科学者の社会的責任のアピールと行動、一般向け書籍による物理の面白さの啓発・普及、そして対称性の美の追究など、多方面に大きな足跡を残した。.

新しい!!: 組合せ (数学)と伏見康治 · 続きを見る »

ライブラリ

ライブラリ()は、汎用性の高い複数のプログラムを再利用可能な形でひとまとまりにしたものである。ライブラリと呼ぶ時は、それ単体ではプログラムとして作動させることはできない実行ファイルではない場合がある。ライブラリは他のプログラムに何らかの機能を提供するコードの集まりと言うことができる。ソースコードの場合と、オブジェクトコード、あるいは専用の形式を用いる場合とがある。たとえば、UNIXのライブラリはオブジェクトコードをarと呼ばれるアーカイバでひとまとめにして利用する。図書館()と同様にプログラム(算譜)の書庫であるので、索引方法が重要である。 また、ソフトウェア以外の再利用可能なものの集合について使われることもある。.

新しい!!: 組合せ (数学)とライブラリ · 続きを見る »

パスカルの三角形

パスカルの三角形(パスカルのさんかくけい、英語:Pascal's triangle)は、二項展開における係数を三角形状に並べたものである。ブレーズ・パスカル(1623年 - 1662年)の名前がついているが、実際にはパスカルより何世紀も前の数学者たちも研究していた。 この三角形の作り方は単純なルールに基づいている。まず最上段に1を配置する。それより下の行はその位置の右上の数と左上の数の和を配置する。例えば、5段目の左から2番目には、左上の1と右上の3の合計である4が入る。このようにして数を並べると、上から n 段目、左から k 番目の数は、二項係数 に等しい(n-1Ck-1 と表すこともある)。これは、パスカルによって示された以下の式に基づいている。 負でない整数 n ≥ k に対して が成り立つ。 パスカルの三角形は三次元以上に拡張が可能である。3次の物は「パスカルのピラミッド」「パスカルの四面体」と呼ばれる。4次以上のものは一般に「パスカルの単体」と呼ばれる。.

新しい!!: 組合せ (数学)とパスカルの三角形 · 続きを見る »

オーム社

株式会社オーム社(英称:Ohmsha, Ltd.)とは、理工学専門書、コンピュータ関連書などを出版する日本の出版社である。社名の由来は、抵抗の単位であるオーム(Ω)から。.

新しい!!: 組合せ (数学)とオーム社 · 続きを見る »

カードゲーム

ードゲームは、広義にはカードを使って行うゲームの総称。狭義にはいわゆるトランプを使ったゲームのこと。 ヨーロッパにこの種のゲームが現れたのは、14世紀のイタリアではないかと推測されている。よくタロット(タロー)の一部がいわゆるトランプになったと言われるが、これは誤りであり、実際はその逆である。その後、遊びの範囲を広くするため、ある特定のゲームを遊びやすくするため、今までの形式とは違った遊びをするため等の理由で専門のカードデッキが生まれた。 近年、個人ごとに決められた範囲内で自由にカードデッキを作り、その内容を元に勝負に臨むトレーディングカードゲームが生まれている。.

新しい!!: 組合せ (数学)とカードゲーム · 続きを見る »

元 (数学)

数学において元(げん、element)とは、集合を構成する個々の数学的対象のことである。ジュゼッペ・ペアノの導入した記法に従えば、対象 が集合 の元であることを と書き表す。このとき対象 が集合 に属する(ぞくする、membership)、あるいは集合 は対象 を含むとも言う。 「属する」という二項関係は、数学的対象と集合(あるいは一般にクラス)との間に定まる非対称な関係(帰属関係)である。外延性の公理により、集合はそれに属する全ての数学的対象を指定することで特徴づけられる。 通常用いられる においては基礎の公理が述べるところによって帰属関係は整礎、すなわち任意の集合は自身を元として含むことはない(帰属関係は反対称関係である)。しかし、基礎の公理の代わりにを置くではそのような制約を受けないが存在し得る。 帰属関係は推移的でない。これは集合の包含関係がそうであることと対照的である。.

新しい!!: 組合せ (数学)と元 (数学) · 続きを見る »

置換 (数学)

数学における置換(ちかん、permutation)の概念は、いくつか僅かに異なった意味で用いられるが、いずれも対象や値を「並べ替える」ことに関するものである。有り体に言えば、対象からなる集合の置換というのは、それらの対象に適当な順番を与えて並べることを言う。例えば、集合 の置換は、 の全部で六種類ある順序組である。単語のアナグラムは、単語を構成する文字列に対する置換として定められる。そういった意味での置換の研究は、一般には組合せ論に属する話題である。 相異なる n 個の対象の置換の総数は 通りであり、これは "n!" と書いて n の階乗と呼ばれる。 置換の概念は、多かれ少なかれ(あるいは陰に陽に)、数学のほとんどすべての領域に現れる。たとえばある有限集合上に異なる順序付けが考えられる場合に、単にそれらの順番を無視したいとか、無視した時にどれほどの配置が同一視されるかを知る必要があるなどの理由で、置換が行われることも多い。同様の理由で、置換は計算機科学におけるソートアルゴリズムの研究において生じる。 代数学、特に群論において、集合 S 上の置換は S から自身への全単射(つまり写像 で S の各元が像としてちょうど一つずつ現れるもの)として定義される。これは各元 s を対応する f(s) と入れ替えるという意味での S の並び替え (rearrangement) と関連する。このような置換の全体は対称群と呼ばれる群を成す。重要なことは、置換の合成が定義できること、つまり二つの並び替えを続けて行うと、それは全体として別の並べ替えになっているということである。S 上の置換は、S の元(あるいはそれを特定の記号によって置き換えたもの)を対象として、それらに対象の並び替えとして作用する。 初等組合せ論において、「」はともに n 元集合から k 個の元を取り出す方法として可能なものを数え上げる問題に関するもので、取り出す順番を勘案するのが k-順列、順番を無視するのが k-組合せである。k.

新しい!!: 組合せ (数学)と置換 (数学) · 続きを見る »

組合せ数学

組合せ数学(くみあわせすうがく、combinatorics)や組合せ論(くみあわせろん)とは、特定の条件を満たす(普通は有限の)対象からなる集まりを研究する数学の分野。特に問題とされることとして、集合に入っている対象を数えたり(数え上げ的組合せ論)、いつ条件が満たされるのかを判定し、その条件を満たしている対象を構成したり解析したり(組合せデザインやマトロイド理論)、「最大」「最小」「最適」な対象をみつけたり(極値組合せ論や組合せ最適化)、それらの対象が持ちうる代数的構造をみつけたり(代数的組合せ論)することが挙げられる。.

新しい!!: 組合せ (数学)と組合せ数学 · 続きを見る »

順列

初等組合せ論における順列(じゅんれつ、sequence without repetition、arrangement)は、区別可能な特定の元から有限個を選んで作られる重複の無い有限列をいう。 初等組合せ論における「」はともに n-元集合から -個の元を取り出す方法として可能なものを数え上げる問題に関するものである。取り出す順番を勘案するのが -順列、順番を無視するのが -組合せである。.

新しい!!: 組合せ (数学)と順列 · 続きを見る »

部分集合

集合 A が集合 B の部分集合(ぶぶんしゅうごう、subset; 下位集合)であるとは、A が B の一部(あるいは全部)の要素だけからなることである。A が B の一部分であるという意味で部分集合という。二つの集合の一方が他方の部分集合であるとき、この二つの集合の間に包含関係があるという。.

新しい!!: 組合せ (数学)と部分集合 · 続きを見る »

重複置換

数学における重複置換(ちょうふくちかん、permutations avec répétition)は、区別不能なものを含む対象を順番を考慮して複数の組に分ける方法を言う(対象は区別できないが、組は区別が付く)。例えば、 は二つの と一つの を持つ重複置換である。 一部に区別のつかないものを含む 個の対象を並べ替えて特定の順番に並べるとき、いくつか同じものが生じる場合がある。 として、 個の対象がつくる -組が 種類の相異なる組に分けられるとき、その各々が 個の対象を含む(ただし、 を満たす)ものを考える。このような -組のなかで区別不能なものを入れ替えて得られる -組は同じものと考える。例えば、文字列 MATHÉMATIQUE のアナグラムを全て求めようとするとき、二つの A は区別が付かないのでこれらを入れ替えても文字列としては変わらないが、É と E を入れ替えたときは文字列として相異なる。.

新しい!!: 組合せ (数学)と重複置換 · 続きを見る »

重複組合せ

数学の一分野である組合せ論における重複組合せ(ちょうふくくみあわせ、じゅうふくくみあわせ、combination with repetition, multi-choose; 重複選択)は、取り出した元の並びは考慮しないが、(通常の(非重複)組合せと異なり)同じ元を複数取り出すことが許される「組合せ」を言う。例えば、( から までの)六面サイコロを10回投げるとき、各出目が何回目に振ったときに出たものか考えなければ、サイコロの出目の「組合せ」となるが、各面のうちには複数回現れるものが存在することになる(たとえば、出目 が一回、 が三回、 が二回、 が四回であるときがその一例である)。.

新しい!!: 組合せ (数学)と重複組合せ · 続きを見る »

重複順列

数学における重複順列(ちょうふくじゅんれつ、sequence (with repetition), arrangement avec répétition)は、区別可能な 個の対象から重複を許して 個の対象を取り出して特定の順番でならべることで生じる。大抵の場合、これを -組(あるいは長さ のリスト)として表す。例えば、 から までの番号が振られた 個の玉が入った箱から 個の玉を取り出して、取り出した順番に番号をリストに記録すると重複順列を得る。.

新しい!!: 組合せ (数学)と重複順列 · 続きを見る »

自然数

自然数(しぜんすう、natural number)とは、個数、もしくは順番を表す一群の数のことである。集合論においては、自然数は物の個数を数える基数のうちで有限のものであると考えることもできるし、物の並べ方を示す順序数のうちで有限のものであると考えることもできる。 自然数を 1, 2, 3, … とする流儀と、0, 1, 2, 3, … とする流儀があり、前者は数論などでよく使われ、後者は集合論、論理学などでよく使われる(詳しくは自然数の歴史と零の地位の節を参照)。いずれにしても、0 を自然数に含めるかどうかが問題になるときは、その旨を明記する必要がある。自然数の代わりに非負整数または正整数と言い換えることによりこの問題を避けることもある。 数学の基礎付けにおいては、自然数の間の加法についての形式的な逆元を考えることによって整数を定義する。正の整数ないしは負でない整数を自然数と同一視し、自然数を整数の一部として取扱うことができる。自然数と同様に整数の全体も可算無限集合である。 なお、文脈によっては、その一群に属する個々の数(例えば 3 や 18)を指して自然数ということもある。.

新しい!!: 組合せ (数学)と自然数 · 続きを見る »

GNU Multi-Precision Library

GNU Multi-Precision Library(GMP)は、多倍長整数など任意の精度の算術ライブラリで、フリーソフトウェアである。符号付き整数、有理数、浮動小数点数を扱う。事実上、動作中のハードウェアが持つメモリ容量以外には精度は制限されない(オペランドの大きさは32ビットマシンでは 231 ビット、64ビットマシンでは 237 ビット)。様々な関数があり、それらが一貫したインタフェースで提供されている。基本インタフェースはC言語だが、他の言語用ラッパーを使えば、C++、OCaml、Perl、Pythonなどでも使える。また、Ruby 2.1でのように、言語コアに組み込まれている例もある。 GMPの主な用途は暗号(実用と研究)、インターネットセキュリティ、数式処理システムである。 GMPは、どんなオペランドの大きさでも他の多倍長整数ライブラリよりも高速であることを目標としている。このために、以下の点を重視している。.

新しい!!: 組合せ (数学)とGNU Multi-Precision Library · 続きを見る »

河出書房新社

株式会社河出書房新社(かわでしょぼうしんしゃ)は、日本の出版社である。本社は東京都渋谷区千駄ヶ谷にある。 3代目社長の河出朋久は歌人でもあり、歌集『白葉集』1-3(短歌研究社、2004-06)がある。佐佐木幸綱、高野公彦、小野茂樹など学生歌人を社員登用していたこともある。.

新しい!!: 組合せ (数学)と河出書房新社 · 続きを見る »

漸化式

数学における漸化式(ぜんかしき、recurrence relation; 再帰関係式)は、各項がそれ以前の項の函数として定まるという意味で数列を再帰的に定める等式である。 ある種の漸化式はしばしば差分方程式 (difference equation) と呼ばれる。また、「差分方程式」という言葉を単に「漸化式」と同義なものとして扱うことも多い。 漸化式の例として、ロジスティック写像 が挙げられる。このような単純な形の漸化式が、しばしば非常に複雑な(カオス的な)挙動を示すことがあり、このような現象についての研究は非線型解析学などと呼ばれる分野を形成している。 漸化式を解くとは、 添字 n に関する非再帰的な函数として、一般項を表すの式を得ることをいう。.

新しい!!: 組合せ (数学)と漸化式 · 続きを見る »

濃度 (数学)

数学、とくに集合論において、濃度(のうど)あるいは基数(きすう)(cardinal number, cardinality, power)とは、集合の「元の個数」という概念を拡張したものである。有限集合については、濃度は「元の個数」の同意語に過ぎない。。。.

新しい!!: 組合せ (数学)と濃度 (数学) · 続きを見る »

有限集合

数学において、集合が有限(ゆうげん、finite)であるとは、自然数 n を用いて という形にあらわされる集合との間に全単射が存在することをいう(ただしここでは、n.

新しい!!: 組合せ (数学)と有限集合 · 続きを見る »

日本数学会

一般社団法人 日本数学会(いっぱんしゃだんほうじんにほんすうがっかい、The Mathematical Society of Japan、略称: MSJ)は、1877年(明治10年)に設立された東京数学会社を起源とする1946年(昭和21年)に設立された学会である。数学の研究に関する交流の場であり、数学を一般社会へ普及することを図る。また、関係諸方面と協力して学術文化の向上発展に寄与することを目的とする。会員約 5,000 名を擁する組織である。日本国内および国際的に、数学の進歩・発展のために力をつくしている。.

新しい!!: 組合せ (数学)と日本数学会 · 続きを見る »

数学

数学(すうがく、μαθηματικά, mathematica, math)は、量(数)、構造、空間、変化について研究する学問である。数学の範囲と定義については、数学者や哲学者の間で様々な見解がある。.

新しい!!: 組合せ (数学)と数学 · 続きを見る »

数字選択式全国自治宝くじ

数字選択式全国自治宝くじ(すうじせんたくしきぜんこくじちたからくじ)は、購入者が申し込む数字を自由に選択できる形式の宝くじである。日本でのみ発売されており、現在は5種類が存在する。単に「数字選択式宝くじ」と呼ぶ場合もある。.

新しい!!: 組合せ (数学)と数字選択式全国自治宝くじ · 続きを見る »

ここにリダイレクトされます:

組み合わせ組合せ

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »