ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
無料
ブラウザよりも高速アクセス!
 

四角形

索引 四角形

四角形(しかくけい、しかっけい、tetragon)は、平面上で4本の直線に囲まれた平面の一部を指す。多角形の一種で、4つの頂点と4本の辺を持つ。.

28 関係: 台形双心四角形合同多角形外接円対角線三角形平行平行四辺形ラジアンルジンの問題ブラーマグプタの公式ブレートシュナイダーの公式アメリカ英語イギリス英語凧形四角 (記号)倍数接頭辞等脚台形直角菱形頂点角度長さ長方形正方形4

台形

台形(だいけい、trapezoid、trapezium)は、四角形の一部で、少なくとも一組の対辺が互いに平行であるような図形である。平行な2本の対辺を台形の底辺といい、そのうち一方を上底(じょうてい)、他方を下底(かてい)とよぶ。また、もう一組の対辺を台形の脚(きゃく)とよぶ。 台形のうち、下底の両端にある2つの内角(底角)の大きさが互いに等しいとき、上底の両端にある2つの底角も互いに等しくなる。このような台形を等脚台形という。等脚台形は線対称な図形であり、その対称軸は2本の底辺それぞれの中点をともに通る。 台形のうち、台形の脚もまた平行となっているとき、すなわち対辺が2組ともそれぞれ平行であるような四角形は平行四辺形とよばれる。平行四辺形は台形の特殊な形と考えられる。平行四辺形は点対称な図形であり、その対称の中心は対角線の交点に等しい。 台形を対角線の1本を境に分割すると2つの三角形になるがその三角形の面積比は上底と下底の長さの比に等しい。これは分割によって高さ(台形の場合は上底と下底の間の距離)の等しい三角形が2つできるためである。 台形を2本の対角線で分割すると4つの三角形になるが、台形の底辺を辺に持つ2つの三角形の面積比は上底と下底の長さの比の平方に等しい。これは分割によって相似な三角形ができるためである。また、台形の脚を辺に持つ2つの三角形の面積は互いに等しく、それらはともに、台形の底辺を辺に持つ2つの三角形の面積の相乗平均に等しい。 台形の面積 S の公式でよく知られているものは である。ここに a, b, h は上底、下底、高さに対応する長さである。用語で表現するなら(上底 + 下底)×(高さ)÷ 2 である。この公式は、台形を対角線で2つに分けたときの各々の三角形の面積が ah/2 および bh/2 であることから得られる。この公式を導く別の方法としては、まず2つの台形を上底と下底以外の辺(上図での AD もしくは BC)同士を重ね合わせて平行四辺形をつくる。そしてその平行四辺形の面積(=(底辺)×(高さ))は (a + b)h であり、その半分が台形の面積にあたるので S.

新しい!!: 四角形と台形 · 続きを見る »

双心四角形

双心四角形(そうしんしかっけい、Bicentric Quadrilateral)とは外接円と内接円の両方をもつ四角形のことである。の一種。.

新しい!!: 四角形と双心四角形 · 続きを見る »

合同

合同(ごうどう).

新しい!!: 四角形と合同 · 続きを見る »

多角形

初等幾何学における多辺形または多角形(たかっけい、polygon; )は、閉あるいは閉曲線を成す、線分の閉じた有限鎖で囲まれた平面図形を言う。多角形を構成するこれら線分をその多角形の辺 (edge, side) と呼び、それらの二つの辺が交わる点をその多角形の頂点 (vertex, corner) と呼ぶ。 個の辺を持つ多角形は -辺形 (-gon) と呼ぶ。例えば三角形は三辺形である。多角形は、より一般の任意次元における超多面体の二次元の例になっている。 多角形に関する基本的な幾何学的概念は特定の目的に応じて様々な方法で適応されてきた。数学においてはしばしば有界な閉折れ線や自己交叉を持たないに限って問題にするため、そのようなもののみ多角形と呼ぶこともある。他方、多角形の境界が自分自身と交わることを許す流儀もあり、その場合星型多角形やその他のが形作られる。その他の多角形の一般化については後述。 多角形 (poly­gon) の語は、「多い」を意味するπολύς と「角」を意味するγωνία に由来する.

新しい!!: 四角形と多角形 · 続きを見る »

外接円

初等幾何学における多角形の外接円(がいせつえん、circumscribed circle, circumcircle)は、その多角形の全ての頂点を通る円を言う。外接円の中心を外心 (circumcenter) と言い、その半径を外接半径 (circumradius) と言う。 外接円を持つ多角形は、円内接多角形 (cyclic polygon; 輪状多角形) あるいは、そのすべての頂点が同一円周上にある(つまり、である)ことにより共円多角形 (concyclic polygon)などと呼ばれる。任意の正や任意の等脚台形、任意の三角形、任意の長方形は共円多角形の例となる。 よく似た概念の一つに (minimum bounding circle) があり、これはその多角形を完全に含む最小の円を言う。(勝手な多角形のすべての頂点が同一円周上にある必要はないのだから)必ずしも任意の多角形に外接円が存在するとは限らないが、任意の多角形は最小包含円をただ一つ持つ(それを線形時間で構成するアルゴリズムがある)。多角形が外接円を持つ場合であっても、外接円と最小包含円が一致するとは限らない。例えば鈍角三角形の最小包含円は最長辺を直径とする円で、これは最長辺の対角の頂点を通らない。.

新しい!!: 四角形と外接円 · 続きを見る »

対角線

対角線(たいかくせん、diagonal)は、多角形上の異なる2つの頂点同士を結ぶ線分のうち辺を除く線分のことである。三角形以外の多角形は全て2本以上の対角線を持つ。 ある多角形の全ての内角が180度未満であるならば全ての対角線はその多角形の内部に存在し、その逆もまた成り立つ。 n角形の対角線の本数dは異なるn個の頂点から2点を選ぶ組み合わせから隣り合った2つの頂点同士を結ぶ線(つまり辺)の本数nを引くことで次のように計算できる。 正五角形の5本全ての対角線をつなげると五芒星になる。これは5本の線分を用いて辺を共有しない5つの三角形を作る方法としても知られる。 正六角形の9本の対角線のうち短い6本を組み合わせた図形はダビデの星の形として有名な六芒星になる。.

新しい!!: 四角形と対角線 · 続きを見る »

三角形

200px 三角形(さんかくけい、さんかっけい、拉: triangulum, 独: Dreieck, 英, 仏: triangle, (古風) trigon) は、同一直線上にない3点と、それらを結ぶ3つの線分からなる多角形。その3点を三角形の頂点、3つの線分を三角形の辺という。.

新しい!!: 四角形と三角形 · 続きを見る »

平行

初等幾何学、特にユークリッド幾何学における平行性(へいこうせい、parallelism)は、ユークリッド平面上の直線が互いに交わらないという関係性を抽象化するものである。三次元空間において、直線と平面や平面同士についても共有点がないことを以って平行性を考えることができる。ただし、三次元空間内の直線同士の場合には、それらが互いに平行となるためにはそれらが同一平面上にあることを要請しなければならない(交わらない二直線は、それらが同一平面上にないならばねじれの位置にあるという)。 平行線はユークリッド原論における平行線公準の主対象である。 平行性は第一義にはの性質の一つであり、ユークリッド幾何学はその種の幾何学の特別な実例である。その他の幾何学においては、例えば双曲幾何学などでは、同様の(しかしまったく同じではない)特定の性質を満たすことを「平行」と言い表す。 以下、特に言及のない限り、主にユークリッド幾何学における平行性について述べる。.

新しい!!: 四角形と平行 · 続きを見る »

平行四辺形

平行四辺形(へいこうしへんけい、英: parallelogram)とは、2組の対辺がそれぞれ平行である四角形のことである。 平行四辺形は、台形の一種である。また、特殊な平行四辺形に長方形,菱形がある。.

新しい!!: 四角形と平行四辺形 · 続きを見る »

ラジアン

ラジアン(radian、記号: rad)は、国際単位系 (SI) における角度(平面角)の単位である。円周上でその円の半径と同じ長さの弧を切り取る2本の半径が成す角の値と定義される。.

新しい!!: 四角形とラジアン · 続きを見る »

ルジンの問題

ルジンの問題( - のもんだい)とは、正方形に関してニコライ・ルジン が考えた問題である。 「任意の正方形を、2個以上の全て異なる大きさの正方形に分割できるか」という問題であり、ルジンはこの問題の解は存在しないと予想したが、その後幾つかの例が発見された。.

新しい!!: 四角形とルジンの問題 · 続きを見る »

ブラーマグプタの公式

ブラーマグプタの公式(ブラーマグプタのこうしき、Brahmagupta's formula)とは、円に内接する四角形の四辺の長さからその四角形の面積を求める公式である。.

新しい!!: 四角形とブラーマグプタの公式 · 続きを見る »

ブレートシュナイダーの公式

ブレートシュナイダーの公式(ブレートシュナイダーのこうしき、Bretschneider's formula)は、四角形の面積を与える公式である。四角形ABCD について、p, q, r, s をそれぞれの辺の長さ、T を周の長さの半分、A と C を互いに対角とすると、四角形の面積は に等しい。円に内接する四角形の面積を表したブラーマグプタの公式の一般化であり、任意の四角形について成り立つ。名前の由来のブレートシュナイダー (1808–1878) はドイツの数学者。.

新しい!!: 四角形とブレートシュナイダーの公式 · 続きを見る »

アメリカ英語

アメリカ英語(アメリカえいご、)は、アメリカ合衆国で使用されている英語の方言。米語(べいご)、米国語とも呼ばれる。.

新しい!!: 四角形とアメリカ英語 · 続きを見る »

イギリス英語

イギリス英語(イギリスえいご、)は英語の中でもイギリスで使用されている英語。英語ではBritish EnglishまたはUK Englishという。.

新しい!!: 四角形とイギリス英語 · 続きを見る »

凧形

凧形(たこがた、kite)は、四角形の種類で、隣り合った2本の辺の長さが等しい組が2組ある図形である。菱形(ひし形)は4本の辺が全て等しい四角形であり、凧形の特殊な形である。「向かい合った」2本の辺(対辺)が2組とも等しい四角形は平行四辺形であり、凧形とは異種の図形である。 凧形では対角線は直交し、異なる長さを持つ2辺によってつくられる2つの向かい合う角の大きさは互いに等しい。また凧形は2つの合同な三角形を同じ角を持つ頂点同士が重なるように並べたものである。ただしその場合は180°以上の内角があってはならない。 凧形は線対称な図形で対称軸は2つの内角を二等分しているほうの対角線である。しかし一般には点対称な図形ではない。 全ての凧形は円に外接する。つまり4本の内角の二等分線は一点で交わり、その点が内接円の中心である。.

新しい!!: 四角形と凧形 · 続きを見る »

四角 (記号)

四角(しかく)は多様な用途で使用される記号である。四角形を表す意味のほか、汎用的な記号としても用いられる。.

新しい!!: 四角形と四角 (記号) · 続きを見る »

倍数接頭辞

倍数接頭辞(ばいすうせっとうじ、numeral, or number prefixes)は英語において数を表す為の接頭辞。接頭辞にはラテン語、ギリシア語、サンスクリット語サンスクリット語の接頭辞を使っている例に関しては例えばMendeleev's predicted elementsを参照。の3種類があるが、主に前者2つが使われる。 具体例としては以下がある:.

新しい!!: 四角形と倍数接頭辞 · 続きを見る »

等脚台形

等脚台形(とうきゃくだいけい、米語:, 英語:)は、台形の一種で、1本の底辺の両端の内角が互いに等しい図形である。このとき、もう一組の底辺の両端の内角も互いに等しくなる。等脚台形は線対称な図形であり、その対称軸は2本の底辺それぞれの中点をともに通る直線である。 等脚台形では右図での辺ABと辺CDのように台形の脚の長さが互いに等しくなる。等脚台形の名称はこの性質に由来するが、一方、平行四辺形も台形の一種であり、この場合、台形の脚の長さも等しくなるので、等脚台形を「脚の長さが等しい台形」と定義するのは誤りである。 等脚台形のうち、底辺BCとADの長さも等しい場合は長方形となる。したがって長方形は等脚台形の特殊な形である。長方形とは、等脚台形であり、かつ平行四辺形でもある四角形だということができる。 等脚台形の面積Sを求める公式は台形の場合と同一で と表される。ただし h は台形の高さで、この場合 BC と AD の距離にあたる。 4本の辺の長さ x, y, z, w.

新しい!!: 四角形と等脚台形 · 続きを見る »

直角

角(ちょっかく、right angle)は90度の角のことであり、一周の4分の1、一直線の2分の1の大きさである。 交点において互いに直角である2直線は垂直であるという。また、直角を持つ三角形のことを直角三角形という。正弦の値は1、正接の値は∞である。 直角は様々な単位で表現することができる。.

新しい!!: 四角形と直角 · 続きを見る »

菱形

菱形(ひしがた、りょうけい)、斜方形(しゃほうけい、)は、4本の辺の長さが全て等しい四角形である。 成立条件に、.

新しい!!: 四角形と菱形 · 続きを見る »

頂点

頂点(ちょうてん、vertex)とは角の端にある点のことである。多角形では2本の辺が接しているか交わっている点、多面体では3本以上の辺が共有している点のことをいう。直観的には図形の周上にある点のうち周辺のどの点よりも突出していて"尖った点"のことを頂点という。転じて日常語としては最高点を指し、「頂点に上り詰める」等と言う。 図ではA,B,Cの3点が頂点 一般にn角形には頂点はn個あり、辺の本数に等しい。座標平面上にある図形ではその頂点を含む範囲で連続であっても微分不可能である。 また曲線が極大値や極小値をとる点のことを頂点ということもある。例えば放物線 y.

新しい!!: 四角形と頂点 · 続きを見る »

角度

角度(かくど、measure of angle, angle)とは、角(かく、angle)の大きさを表す量・測度のことである。なお、一般の角の大きさは、単位の角の大きさの実数倍で表しうる。角およびその角度を表す記号としては ∠ がある。これは角記号(かくきごう、angle symbol)と呼ばれる。 単に角という場合、多くは平面上の図形に対して定義された平面角(へいめんかく、plane angle)を指し、さらに狭義にはある点から伸びる2つの半直線(はんちょくせん、ray)によりできる図形を指す。平面角の角度は、同じ端点を持つ2つの半直線の間の隔たりを表す量といえる。2つの半直線が共有する端点は角の頂点(かくのちょうてん、vertex of angle)と呼ばれ、頂点を挟む半直線は角の辺(かくのへん、side of angle)と呼ばれる。また、直線以外の曲線や面などの図形がなす角の角度も、何らかの2つの直線のなす角の角度として定義される。より広義には、角は線や面が2つ交わって、その交点や交線の周りにできる図形を指す。線や面が2つ交わって角を作ることを角をなすという。ここでいう面は通常の2次元の面に限らず、一般には超平面である。 角が現れる基本的な図形としては、たとえば三角形や四角形のような多角形(たかくけい、polygon)がある。特に三角形は平面図形における最も基本的な図形であり、すべての多角形は三角形の組み合わせによって表現することができる。また、他にも単純な性質を多く持っているため、様々な場面で応用される。有名なものは余弦定理(よげんていり、law of cosines)や、三角形の辺の比を通じて定義される三角関数(さんかくかんすう、trigonometric function)などがある。余弦定理と三角関数は、三角形の角と辺の間に成り立つ関係を示したもので、これらの関係を利用して、三角形の辺の長さからある角の大きさを求めたり、大きさが既知の角から辺の長さや長さの比を求めることができる。このことはしばしば三角形の合同条件(さんかっけいのごうどうじょうけん、congruence condition of triangles)としても言及される。 物理学など自然科学においては、量の次元が重要な役割を果たす。例えば、辺の長さや弧の長さは物理量として「長さ」の次元を持っているが、国際量体系において、角度は辺の長さの比などを通じて定義される無次元量であるとしている。角度が無次元であることは、直ちに角度が単位を持たないことを意味しない。例えば角度を表す単位としてはラジアン(らじあん、radian)や度(ど、degree)が有名である。ラジアンと度の換算は以下の式によって示される。 また、ラジアンで表された数値は単位なしの数として扱うことができる。 角度に関連する物理学の概念として、位相(いそう、phase)がある。位相は波のような周期的な運動を記述するパラメーターであり、その幾何学的な表現が角度に対応している。位相も角度と同様にラジアンが単位に用いられる。 立体的な角として立体角(りったいかく、solid angle)も定義されているが、これは上記の定義には当てはまらない。その大きさは単に立体角と呼ばれることが多く、角度と呼ばれることはほとんどない。 以下、本項目においては平面角を扱う。.

新しい!!: 四角形と角度 · 続きを見る »

辺(へん、二次元図形ではside、三次元図形ではedge(但し、円柱の辺の様に線分でないものはedgeと呼ばれない))は、特定の“図形”の中で 1 次元の“部分”となっている、両端に頂点と呼ばれる特別の点を 0 次元の“部分”として含むような線分である。辺は“線分”であり通常はまっすぐであるものを指すが、位相幾何学(トポロジー)的な文脈など、場合によっては曲がっていても構わずに辺と呼ぶことがある。 辺と呼ばれる“部分”を含むような“図形”としては例えば、多角形、グラフ理論におけるグラフ、単体的複体などを挙げることができる。 正確に辺の概念を考えるためには、頂点と呼ばれる点の集合 V の部分集合からなる集合族の族 D を図形として捉えて、V の二つの頂点 v, w に対して、D に含まれる の形(あるいはこれに空集合を含めた形)に表される集合、あるいは同じことではあるが、 の冪集合に順序同型なる集合が辺であるというのが適当である。ユークリッド空間内の点集合を図形と捉えるような立場では、このような D と図形とが一対一に対応すると考えることは望むべくもない。特に辺上には無数の点が乗っており、頂点を決めても辺が一意的に決まるわけではない。それでもなお、辺はこのような方法によって図形の中の“部分”として特徴付けられる。 Category:初等幾何学 Category:数学に関する記事.

新しい!!: 四角形と辺 · 続きを見る »

長さ

長さ(ながさ、length)とは、.

新しい!!: 四角形と長さ · 続きを見る »

長方形

長方形 長方形(ちょうほうけい、rectangle)とは.

新しい!!: 四角形と長方形 · 続きを見る »

正方形

正方形(せいほうけい、英: square)または正四角形は、平面上の幾何学において、4つの辺の長さが全て等しく、4つの角の角度が全て等しい四角形のことであり、正多角形の1種である。正方形は、長方形、菱形、凧形、平行四辺形、台形の特殊な形だと考えることもできる。なお1m2の面積は、一辺1mの正方形の面積と定義される。1cm2、1km2なども同様である。.

新しい!!: 四角形と正方形 · 続きを見る »

4

四」の筆順 4(四、よん、し、す、よつ、よ)は、自然数および整数で、3 の次で 5 の前の数である。漢字の「四」は音読みが「し」、訓読みが「よ(よつ)」であるが、四の字「七(しち)」との聞き違いを防ぐため、近年では「よん」という読みが用いられる。英語の序数詞では 4th/''fourth'' となる。ラテン語では quattuor (クアットゥオル)。.

新しい!!: 四角形と4 · 続きを見る »

ここにリダイレクトされます:

平面四角形四辺形

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »