ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
インストール
ブラウザよりも高速アクセス!
 

半径

索引 半径

球の半径 半径(はんけい、radius)は、円や球体など中心(あるいは中心軸)をもつ図形の、中心(中心軸)から周に直交するように引いた線分のこと。また、その線分の長さを指すこともあり、この長さを数学や物理学では小文字の r で表すことがある。 円や球の場合は、差し渡しの長さを意味する径の半分の長さを持つために、これを半径といい、対して区別のために径を直径と呼ぶ。一方で、半径は中心に関する対称性を持つ図形にしか定義できないという特徴を持つため、半径と径とは直接的な関係を持つわけではない。.

16 関係: 小文字位置ベクトル円 (数学)円周円柱 (数学)球体球面物理学直交直線R極座標系数学

小文字

小文字(こもじ、lower case、minuscule、small letter)は、ギリシア文字やそれから派生した文字体系で、文頭、固有名詞のはじめなど以外に使う小ぶりの字形の文字である。もともとこれらの文字では大文字だけを使って記述してきたが、筆記を簡単にするために、角を丸めたりした文字から小文字が作られ、大文字と、ひとつの文、単語の中で混在して用いられるようになった。 大文字・小文字の区別がある文字体系は、ギリシア文字、ラテン文字、キリル文字、アルメニア文字、デザレット文字などである。国際音声記号 (IPA) には小文字のみがある。 大文字に比べて副次的なイメージがあるが、実際には文章のほとんどは小文字で書かれる。大文字と小文字の使い分けについては大文字を参照のこと。 スモールキャピタルは、大文字と同じ字形で大きさがxハイト(小文字のxの高さ)の活字である。小文字と同様に使われるが、分野や用途によっては特別の意味があることがある。 ひらがな・カタカナで拗音・促音などを表す「ぁぃぅぇぉゕゖっゃゅょゎ」「ァィゥェォヵヶッャュョヮ」は「小書き(文字)」もしくは「捨て仮名」と呼ばれるが、これも小文字ということがある。英語では small letter という。.

新しい!!: 半径と小文字 · 続きを見る »

位置

位置(いち、position)とは、物体が空間の中のどこにあるかを表す量である。 原点 O から物体の位置 P へのベクトル(位置ベクトル (position vector))で表される。通常は x, r, s で表され、O から P までの各軸に沿った直線距離に対応する。 「位置ベクトル」という用語は、主に微分幾何学、力学、時にはベクトル解析の分野で使用される。 2次元または3次元空間で使用されることが多いが、任意の次元数のユークリッド空間に容易に一般化することができるKeller, F. J, Gettys, W. E. et al.

新しい!!: 半径と位置 · 続きを見る »

初等幾何学における図形の径(けい、diameter)は、その図形の差し渡しをいう。διάμετρος(「亙りの」+ 「大きさ」) に由来する。 円の直径は、その円の中心を通り、両端点がその円周上にある任意の線分であり、またその円の最長のでもある。球体の直径についても同様。 より現代的な用法では、任意の直径の(一意な)長さ自身も同じく「直径」と呼ばれる(一つの円に対して線分の意味での直径は無数にあるが、その何れも同じ長さを持つことに注意する。それゆえ(量化を伴わず)単に円の直径といった場合、ふつうは長さとしての意味である)。長さとして、直径は半径 (radius) の二倍に等しい。 平面上の凸図形に対して、その径は図形の両側から接する二本の平行線の間の最長距離として定義される(同様の最小距離は幅 (width) と呼ばれる)。径(および幅)はを用いて効果的に計算することができる。ルーローの三角形のような定幅図形では、任意の平行接線が同じ長さを持つから、径と幅は一致する。.

新しい!!: 半径と径 · 続きを見る »

ベクトル

ベクトル()またはベクター() ベクトルは Vektor に由来し、ベクターは vector に由来する。物理学などの自然科学の領域ではベクトル、プログラミングなどコンピュータ関係ではベクターと表記される、という傾向が見られることもある。また、技術文書などではしばしばJIS規格に準拠する形で、長音を除いたベクタという表記が用いられる。 は「運ぶ」を意味するvehere に由来し、18世紀の天文学者によってはじめて使われた。 ベクトルは通常の数(スカラー)と区別するために矢印を上に付けたり(例: \vec,\ \vec)、太字で書いたりする(例: \boldsymbol, \boldsymbol)が、分野によっては矢印も太字もせずに普通に書くこともある(主に解析学)。 ベクトル、あるいはベクターに関する記事と用法を以下に挙げる。.

新しい!!: 半径とベクトル · 続きを見る »

円 (数学)

数学において、円(えん)とは、平面(2次元ユークリッド空間)上の、定点 O からの距離が等しい点の集合でできる曲線のことをいう。ここで現れる定点 O を円の中心と呼ぶ。円には、その中心が1つあり、また1つに限る。中心から円周上の 1 点を結んだ線分を輻(や)とよび、その長さを半径というが、現在では輻のことを含めて半径と呼ぶことが多い。中心が点 O である円を、円 O と呼ぶ。定幅図形の一つ。 円が囲む部分、すなわち円の内部を含めて円ということもある。この場合は、曲線のことを円周という。これに対して、内部を含めていることを強調するときには円板という。また、三角形、四角形などと呼称を統一して、円形ということもある。 数学以外の分野ではこの曲線のことを「丸(まる)」という俗称で呼称することがある。 円: 中心、半径・直径、円周.

新しい!!: 半径と円 (数学) · 続きを見る »

円周

円周(えんしゅう、circumference)とは、円の周囲もしくは周長のこと。円周と直径の比率を円周率という。.

新しい!!: 半径と円周 · 続きを見る »

円柱 (数学)

数学において円柱(えんちゅう、cylinder)とは二次曲面(三次元空間内の曲面)の一種で、デカルト座標によって次の方程式で定義されるものである: この方程式は楕円柱を表し、a.

新しい!!: 半径と円柱 (数学) · 続きを見る »

球(きゅう、ball)とは、.

新しい!!: 半径と球 · 続きを見る »

球体

数学における球体(きゅうたい、ball)は球面の内側の空間全体を言う。それが境界点の全体である球面を全く含むとき閉球体(へいきゅうたい、closed ball)、全く含まないとき開球体(かいきゅうたい、open ball)と呼ばれる。 これらの概念は三次元ユークリッド空間のみならず、より低次または高次の空間、あるいはより一般の距離空間において定義することができる。-次元の球体は -次元(超)球体(あるいは短く -球体)と呼ばれ、その境界は(''n''−1)-次元(超)球面'''(あるいは短く -球面)と呼ばれる。例えばユークリッド平面における球体は円板のことであり、それを囲む境界は円周である。また、三次元ユークリッド空間における球体(通常の球体)は二次元球面(通常の球面)によって囲まれる体積を占める。 ユークリッド幾何学などの文脈において、球体 (ball) の意味でしばしば略式的に球 (sphere) と呼ぶ場合がある(球が球面の意である場合もある)。.

新しい!!: 半径と球体 · 続きを見る »

球面

球面(きゅうめん)とは球体の表面の意である。数学における球面 (sphere) は、距離の定められた空間の定点からの距離が一定であるような点の軌跡として定義される、非常に高い対称性を示す図形である。球面の囲む有界領域を球体あるいは単に球 (ball) と呼ぶ。一般には三次元ユークリッド空間 E3 内のもの、つまり二次元球面を指す場合が多い。.

新しい!!: 半径と球面 · 続きを見る »

物理学

物理学(ぶつりがく, )は、自然科学の一分野である。自然界に見られる現象には、人間の恣意的な解釈に依らない普遍的な法則があると考え、自然界の現象とその性質を、物質とその間に働く相互作用によって理解すること(力学的理解)、および物質をより基本的な要素に還元して理解すること(原子論的理解)を目的とする。化学、生物学、地学などほかの自然科学に比べ数学との親和性が非常に強い。 古代ギリシアの自然学 にその源があり, という言葉も、元々は自然についての一般的な知識の追求を意味しており、天体現象から生物現象までを含む幅広い概念だった。現在の物理現象のみを追求する として自然哲学から独立した意味を持つようになったのは19世紀からである。 物理学の古典的な研究分野は、物体の運動、光と色彩、音響、電気と磁気、熱、波動、天体の諸現象(物理現象)である。.

新しい!!: 半径と物理学 · 続きを見る »

直交

初等幾何学における直交(ちょっこう、orthogonal)は「垂直に交わる」こと、すなわちユークリッド空間内の交わる二つの直線や平面のなす角が直角であることを意味する。 このことは、直線と曲線または曲線同士、あるいは平面と曲面または曲面同士、もしくは曲線と曲面などの場合にも、交点において曲線の接線(または法線)あるいは曲面の接平面(または法線)などを考えることにより拡張できる。すなわち接線同士(または法線同士)の直交を以って二つの曲線の直交を定義するのである。注意すべきこととして、これら対象の直交性をベクトルによって定めるならば、(ベクトルは平行移動不変であるから)直交するそれらの対象は必ずしも「交わらない」。また非標準的な内積に関する直交性を考えるならば、直交するふたつのベクトルは必ずしも直角を成さない。 解析学や線型代数学に属する各分野を含め、直交性の概念は数学において広範に一般化して用いられる。.

新しい!!: 半径と直交 · 続きを見る »

直線

線の正確な表示(直線は太さを持たない図形である為、厳密に正しく表示した場合、視覚では確認不能となる) 線分 直線(ちょくせん、line)とは、太さを持たない幾何学的な対象である曲線の一種で、どこまでもまっすぐ無限に伸びて端点を持たない。まっすぐな線には直線の他に、有限の長さと両端を持つ線分(せんぶん、line segment、segment)と、一つの端点を始点として無限にまっすぐ伸びた半直線(はんちょくせん、ray、half-line)がある。.

新しい!!: 半径と直線 · 続きを見る »

R

Rは、ラテン文字(アルファベット)の18番目の文字。小文字は r 。ギリシア文字のΡ(ロー)に由来し、キリル文字のР(エル)と同系の文字である。.

新しい!!: 半径とR · 続きを見る »

極座標系

極座標系(きょくざひょうけい、polar coordinates system)とは、n 次元ユークリッド空間 R 上で定義され、1 個の動径 r と n − 1 個の偏角 θ, …, θ からなる座標系のことである。点 S(0, 0, x, …,x) を除く直交座標は、局所的に一意的な極座標に座標変換できるが、S においてはヤコビアン が 0 となってしまうから、一意的な極座標表現は不可能である。それは、S に於ける偏角が定義できないことからも明らかである。.

新しい!!: 半径と極座標系 · 続きを見る »

数学

数学(すうがく、μαθηματικά, mathematica, math)は、量(数)、構造、空間、変化について研究する学問である。数学の範囲と定義については、数学者や哲学者の間で様々な見解がある。.

新しい!!: 半径と数学 · 続きを見る »

ここにリダイレクトされます:

動径

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »