ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
インストール
ブラウザよりも高速アクセス!
 

化学量論

索引 化学量論

化学量論(かがくりょうろん、stoichiometry)とは化学反応における量的関係に関する理論である。言い換えると、化学反応は反応系内の個々の分子が反応により決まる形式による組み換えであるから、反応に関与した量は比例関係が成立することから化学反応の量的関係を説明する理論である。速度論反応との対概念の(化学)量論反応については化学反応論に詳しい。 の語はギリシャ語の根源要素()を意味するστοιχεῖονと計測()を意味するμέτρονとに由来する。.

19 関係: 定量分析定比例の法則化学反応化学式モル質量モル濃度アントワーヌ・ラヴォアジエアボガドロ定数ギリシャジョン・ドルトンジョゼフ・プルースト元素倍数比例の法則物質量質量保存の法則量子化学酸化数有機電子論

定量分析

定量分析(ていりょうぶんせき、quantitative analysis)とは、試料中にある成分量を決定するために実施する化学分析である。試料中の成分が未知である場合は、定量分析に先立って定性分析を実施する。 古典的には成分の重量を測定する重量分析〈じゅうりょうぶんせき、gravimetric analysis〉、容量を測定する容量分析〈ようりょうぶんせき、volumetric analysis〉、化学変化による色調変化を比較測定する比色分析〈ひしょくぶんせき、colorimetric analysis〉の3つの分析方法に分類される。前二者は物理的な物理量を直接測定し物質量を決定するが、比色分析は予め、含量を精密に決定した基準試料〈きじゅんしりょう、authentic sample〉を複数用意して化学変化の度合を未知試料と比較して間接的に決定する。 重量分析では、測定に先立って成分の分離を行い、その後質量を計測する必要がある。たとえば、試料中の塩化物イオンを硝酸銀を加えて塩化銀としてすべて沈澱させ、生成した塩化銀を濾過で分離捕集して乾燥重量を測定する。あるいは元素分析では炭素、水素、窒素量は重量分析で決定する。 容量分析は分離精製した気体の体積測定も含まれるが、通常は滴定法による滴下した容量を測定することを意味する。すなわち、滴下容量は試料中の成分の当量に比例するので、容量から当量を換算して成分量を決定する。 今日の機器分析では色調以外にも、電気,光学的強度,磁気,熱,放射能など多彩な物理量を測定することで定量分析が可能であるが、それらも比色分析同様に基準試料の応答と比較することで間接的に物質量を決定する。測定する物理変化量と物質量の間に、線形なグラフが成立する場合は検量線により、基準試料の空隙を補完することで精密に定量することが可能である。 今日では成分分離に高速液体クロマトグラフィー法を量測定に各測定器を組み合わせた分析機器が定量分析用機器の主流になっている。.

新しい!!: 化学量論と定量分析 · 続きを見る »

定比例の法則

定比例の法則(ていひれいのほうそく、)とは、物質が化学反応する時、反応に関与する物質の質量の割合は、常に一定であるという法則。また化学反応において元素の転換は起こらないので、これは化合物を構成する成分元素の質量の比は常に一定であることも意味する。例えば水を構成する水素と酸素の質量の比は常に1:8である(1Hと16Oのみを考えた場合)。他の例としては、酸化銅(II)を構成する銅と酸素の質量の比が常に4:1であることなどがある。 法則の和名が現象に則さないため、近年では一定組成の法則への名称変更が提唱されている。.

新しい!!: 化学量論と定比例の法則 · 続きを見る »

化学反応

化学反応(かがくはんのう、chemical reaction)は、化学変化の事、もしくは化学変化が起こる過程の事をいう。化学変化とは1つ以上の化学物質を別の1つ以上の化学物質へと変化する事で、反応前化学物質を構成する原子同士が結合されたり、逆に結合が切断されたり、あるいは化学物質の分子から電子が放出されたり、逆に電子を取り込んだりする。広義には溶媒が溶質に溶ける変化や原子のある同位体が別の同位体に変わる変化、液体が固体に変わる変化MF2等も化学変化という。 化学変化の前後では、化学物質の分子を構成する原子の結合が変わって別の分子に変化する事はあるが、原子そのものが別の原子番号の原子に変わる事はない(ただし原子間の電子の授受や同位体の変化はある)。この点で原子そのものが別の原子に変化する原子核反応とは大きく異なる。 化学反応では反応前の化学物質を反応物(reactant)、反応後の化学物質を生成物(product)といい、その過程は化学反応式で表記される。例えば反応物である(塩酸)とNaOH(水酸化ナトリウム)が化学反応して生成物であるH2O(水分子)とNaCl(食塩)ができあがる状況を示した化学反応式は と表記される。.

新しい!!: 化学量論と化学反応 · 続きを見る »

化学式

化学式(かがくしき、chemical formula)とは、化学物質を元素の構成で表現する表記法である。分子からなる物質を表す化学式を分子式(ぶんししき、molecular formula)、イオン物質を表す化学式をイオン式(イオンしき、ionic formula)と呼ぶことがある。化学式と呼ぶべき場面においても、分子式と言い回される場合は多い。 化学式が利用される場面としては、物質の属性情報としてそれに関連付けて利用される場合と、化学反応式の一部として物質を表すために利用される場合とがある。.

新しい!!: 化学量論と化学式 · 続きを見る »

モル質量

。--> 物質のモル質量(モルしつりょう、molar mass)とは、その物質の単位物質量当たりの質量である。物質の質量をその物質の物質量で割ったものに等しいグリーンブック (2009) p. 57.

新しい!!: 化学量論とモル質量 · 続きを見る »

モル濃度

モル濃度(モルのうど、molar concentration)は濃度を表す方式の一つで、単位体積の溶液中の溶質の物質量である。モル濃度のSI単位は mol m−3(モル毎立方メートル)であるが、通常 mol dm−3(モル毎立方デシメートル)や mol L−1(モル毎リットル)の単位がよく用いられる。化学や生化学などでよく用いられる濃度表示法であるが、通常溶液の体積は温度に依存して変化するため熱力学では使われにくい。しかし、この問題は温度補正係数や質量モル濃度など温度が影響しない方法をとることにより解決される。 直近の国際機関JCGM 200:2012 (VIM3) の用語に従えば、これは、物質量濃度(.

新しい!!: 化学量論とモル濃度 · 続きを見る »

アントワーヌ・ラヴォアジエ

Marie-Anne Pierrette Paulzeの肖像画 『化学要論』(名古屋市科学館展示、金沢工業大学所蔵 『化学要論』(名古屋市科学館展示、金沢工業大学所蔵 マリー=アンヌが描いた実験図。A側の方を熱してAは水銀、Eは空気である 呼吸と燃焼の実験 ダイヤモンドの燃焼実験 宇田川榕菴により描かれた『舎密開宗』。蘭学として伝わったラヴォアジエの水素燃焼実験図 Jacques-Léonard Mailletによって作られたラヴォアジエ(ルーヴル宮殿) アントワーヌ・ラヴォアジエ Éleuthère Irénée du Pont de Nemoursとラヴォアジエ アントワーヌ=ローラン・ド・ラヴォアジエ(ラボアジェなどとも、フランス語:Antoine-Laurent de Lavoisier, 、1743年8月26日 - 1794年5月8日)は、フランス王国パリ出身の化学者、貴族。質量保存の法則を発見、酸素の命名、フロギストン説を打破したことから「近代化学の父」と称される - コトバンク、2013年3月27日閲覧。。 1774年に体積と重量を精密にはかる定量実験を行い、化学反応の前後では質量が変化しないという質量保存の法則を発見。また、ドイツの化学者、医師のゲオルク・シュタールが提唱し当時支配的であった、「燃焼は一種の分解現象でありフロギストンが飛び出すことで熱や炎が発生するとする説(フロギストン説)」を退け、1774年に燃焼を「酸素との結合」として説明した最初の人物で、1779年に酸素を「オキシジェーヌ(oxygène)」と命名した。ただし、これは酸と酸素とを混同したための命名であった。 しばしば「酸素の発見者」と言及されるが、酸素自体の最初の発見者は、イギリスの医者ジョン・メーヨーが血液中より酸素を発見していたが、当時は受け入れられず、その後1775年3月にイギリスの自然哲学者、教育者、神学者のジョゼフ・プリーストリーが再び発見し、プリーストリーに優先権があるため、厳密な表現ではない; 。進展中だった科学革命の中でプリーストリーの他にスウェーデンの化学者、薬学者のカール・ヴィルヘルム・シェーレが個別に酸素を発見しているため、正確に特定することは困難だが、結果としてラヴォアジエが最初に酸素を「酸素(oxygène)」と命名したことに変わりはない。またアメリカの科学史家の トーマス・クーンは『科学革命の構造』の中でパラダイムシフトの概念で説明しようとした。。なお、プリーストリーは酸素の発見論文を1775年に王立協会に提出しているため、化学史的に酸素の発見者とされる人物はプリーストリーである。 また、化学的には誤りではあったが物体の温度変化を「カロリック」によって引き起こされるものだとし、これを体系づけてカロリック説を提唱した。.

新しい!!: 化学量論とアントワーヌ・ラヴォアジエ · 続きを見る »

アボガドロ定数

アボガドロ定数(アボガドロていすう、Avogadro constant )とは、物質量 1 mol とそれを構成する粒子(分子、原子、イオンなど)の個数との対応を示す比例定数で、SI単位は mol である。イタリア出身の化学者、アメデオ・アヴォガドロにちなんで名付けられており、記号 で表す。以前はアボガドロ数(アボガドロすう、Avogadro's number )と呼ばれたが、1969年のIUPAC総会でアボガドロ定数に名称が変更された。 なお、アボガドロ定数に関連し、時に混同される数として、0 ℃・1 atmの気体1 cmに含まれる分子の数、ロシュミット数(Loschmidt's number)がある。.

新しい!!: 化学量論とアボガドロ定数 · 続きを見る »

ギリシャ

リシャ共和国(ギリシャきょうわこく、ギリシャ語: Ελληνική Δημοκρατία)、通称ギリシャは、南ヨーロッパに位置する国。2011年国勢調査によると、ギリシャの人口は約1,081万人である。アテネは首都及び最大都市であり、テッサロニキは第2の都市及び中央マケドニアの州都である。.

新しい!!: 化学量論とギリシャ · 続きを見る »

ジョン・ドルトン

ョン・ドルトン(John Dalton, 1766年9月6日 - 1844年7月27日)は、イギリスの化学者、物理学者ならびに気象学者。原子説を提唱したことで知られる。また、自分自身と親族の色覚を研究し、自らが先天色覚異常であることを発見したことによって、色覚異常を意味する「ドルトニズム (Daltonism)」の語源となった。.

新しい!!: 化学量論とジョン・ドルトン · 続きを見る »

ジョゼフ・プルースト

ジョセフ・プルースト(Joseph Louis Proust, 1754年9月26日 - 1826年7月5日)は、フランスの化学者である。定比例の法則を唱え、ベルトレーとの論争を通じて化合物が、元素の整数比の組合わせでできているという概念を広めたことで知られる。 プルーストはアンジェに生れ、父親の薬局で化学を学んだ。ジャック・シャルルと親しく、1783年頃気球による飛行の研究を行った。その後スペインのセゴビアの砲兵学校の化学の教授になり、1789年からスペイン王、カルロス4世のマドリッドの化学研究所の所長になった。1792年にはプルーストが設計したスペイン最初の気球がカルロス4世の前で飛行した。1806年フランスに戻った。1808年、カルロス4世が退位し、ジョゼフ・ボナパルトがスペイン王になると保護者を失った。1816年に科学アカデミーの会員になった。 プルーストの業績は1794年にブドウ糖など糖類の研究で業績をあげた。この頃からベルトレーと、化合物中の成分元素の量の比が一定かどうかの論争と金属の酸化物に関する実験を行い1799年に定比例の法則が確立されたとされる。 Category:フランスの化学者 Category:18世紀の学者 Category:19世紀の自然科学者 Category:アンジェ出身の人物 Category:1754年生 Category:1826年没.

新しい!!: 化学量論とジョゼフ・プルースト · 続きを見る »

元素

元素(げんそ、elementum、element)は、古代から中世においては、万物(物質)の根源をなす不可欠な究極的要素広辞苑 第五版 岩波書店を指しており、現代では、「原子」が《物質を構成する具体的要素》を指すのに対し「元素」は《性質を包括する抽象的概念》を示す用語となった。化学の分野では、化学物質を構成する基礎的な成分(要素)を指す概念を指し、これは特に「化学元素」と呼ばれる。 化学物質を構成する基礎的な要素と「万物の根源をなす究極的要素」としての元素とは異なるが、自然科学における元素に言及している文献では、混同や説明不足も見られる。.

新しい!!: 化学量論と元素 · 続きを見る »

倍数比例の法則

倍数比例の法則(ばいすうひれいのほうそく、 )とは、同じ成分元素からなる化合物の間に成り立つ法則である。この法則は、1802年にジョン・ドルトンによって発見され、彼が発表した原子論の有力な証拠として発表された。 法則の和名が現象に則さないため、近年では倍数組成の法則への名称変更が提唱されている。.

新しい!!: 化学量論と倍数比例の法則 · 続きを見る »

物質量

物質量(ぶっしつりょう、)は、物質の量を表す物理量のひとつ体積、質量、分子数、原子数などでも物質の量を表すことができる。である。物質を構成する要素粒子の個数をアボガドロ定数 (約 6.022×1023 mol-1) で割ったものに等しい。要素粒子()は物質の化学式で表される。普通は、分子性物質の場合は分子が要素粒子であり、イオン結晶であれば組成式で書かれるものが要素粒子であり、金属では原子が要素粒子である。 物質量は1971年に国際単位系 (SI) の7番目の基本量に定められた。表記する場合は、量記号はイタリック体の 、量の次元の記号はサンセリフ立体の N が推奨されている。物質量のSI単位はモルであり、モルの単位記号は mol である。熱力学的な状態量として見れば示量性状態量に分類される。.

新しい!!: 化学量論と物質量 · 続きを見る »

質量保存の法則

質量保存の法則(しつりょうほぞんのほうそく、law of conservation of mass)とは「化学反応の前と後で物質の総質量は変化しない」とする化学の法則のことである。現在は自然の基本法則ではないことが知られているが、実用上広く用いられている。.

新しい!!: 化学量論と質量保存の法則 · 続きを見る »

量子化学

量子化学(りょうしかがく、quantum chemistry)とは理論化学(物理化学)の一分野で、量子力学の諸原理を化学の諸問題に適用し、原子と電子の振る舞いから分子構造や物性あるいは反応性を理論的に説明づける学問分野である。.

新しい!!: 化学量論と量子化学 · 続きを見る »

酸化数

酸化数(さんかすう、英: Oxidation number)とは、対象原子の電子密度が、単体であるときと比較してどの程度かを知る目安の値である。1938年に米国のウェンデル・ラティマー (Wendell Mitchell Latimer) が考案した。 酸化とはある原子が電子を失うことであるから、単体であったときより電子密度が低くなっている。それに対して還元とはある原子が電子を得ることであるから、単体であったときより電子密度が高くなっている。 ある原子が酸化状態にある場合、酸化数は正の値をとり、その値が大きいほど電子不足の状態にあることを示す。逆に還元状態にある場合には負の数値をとり、その値が大きいほど電子過剰の状態にあることを示す。 酸化数はローマ数字で記述するのが通例である。.

新しい!!: 化学量論と酸化数 · 続きを見る »

鉄(てつ、旧字体/繁体字表記:鐵、iron、ferrum)は、原子番号26の元素である。元素記号は Fe。金属元素の1つで、遷移元素である。太陽や他の天体にも豊富に存在し、地球の地殻の約5%を占め、大部分は外核・内核にある。.

新しい!!: 化学量論と鉄 · 続きを見る »

有機電子論

有機電子論(ゆうきでんしろん、electronic theory of organic chemistry)とは化学結合の性質および反応機構を、電荷の静電相互作用と原子を構成する価電子とにより説明する理論である。有機化学の領域では単に電子論と呼ばれる。.

新しい!!: 化学量論と有機電子論 · 続きを見る »

ここにリダイレクトされます:

化学量数概念非化学量論数

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »