ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
無料
ブラウザよりも高速アクセス!
 

分位数(ぶんいすう)、分位点(ぶんいてん)、分位値(ぶんいち)、クォンタイル (quantile) は、統計の代表値の1種である。 実数 q \in に対し、q 分位数 は、分布を q: 1 - q に分割する値である。 ある種の正の整数 m に対し、分布を m 等分する m - 1 個の値、つまり、i.

23 関係: 外れ値実数平均床関数と天井関数ロバストネス分散 (確率論)ソート内挿確率確率分布統計統計的ばらつき要約統計量近似値関数 (数学)自然数標準偏差正規分布漢数字最大と最小日本規格協会数列整数

外れ値

外れ値(はずれち、英:outlier )は、統計において他の値から大きく外れた値である。 測定ミス・記録ミス等に起因する異常値とは概念的には異なるが、実用上は区別できないこともある。.

新しい!!: 分位数と外れ値 · 続きを見る »

実数

数学における実数(じっすう、 nombre réel, reelle Zahl, real number)は、様々な量の連続的な変化を表す数の体系である。実数全体の空間は、途切れのなさにあたる完備性とよばれる位相的な性質を持ち、代数的には加減乗除ができるという体の構造を持っている。幾何学や解析学ではこれらのよい性質を利用して様々な対象が定義され、研究されている。一方でその構成方法に自明でない手続きが含まれるため、実数の空間は数学基礎論の観点からも興味深い性質を持っている。また、自然科学における連続的なものの計測値を表すのに十分な数の体系だとも考えられている。 実数の概念は、その形式的な定義が19世紀に達成される前から数の体系として使われていた。「実数」という名前は複素数の概念が導入された後に「普通の数」を表現する言葉として導入されたものである。.

新しい!!: 分位数と実数 · 続きを見る »

平均

平均(へいきん、mean, Mittelwert, moyenne)または平均値(へいきんち、mean value)は、観測値の総和を観測値の個数で割ったものである。 例えば A、B、C という3人の体重がそれぞれ 55 kg、60 kg、80 kg であったとすると、3人の体重の平均値は (55 kg + 60 kg + 80 kg)/3.

新しい!!: 分位数と平均 · 続きを見る »

年越し

年越し(としこし)は1年の最後の日、グレゴリオ暦で12月31日であり、多くの地域ではシルヴェスターの日と呼ぶ。多くの国で、年越しの夜の会合で多くの人が踊り、食べ、酒を飲んで、新年を迎える花火で祝う。年越しの礼拝に行く人たちもいる。祝祭は通常、深夜0時を過ぎ1月1日(元日)まで続く。キリバスとサモアが最も早く新年を迎える国であり、ハワイ州ホノルルが最後の地域である。.

新しい!!: 分位数と年越し · 続きを見る »

年末年始

年末年始(ねんまつねんし)は、厳密な定義はないが、1年の終わりから翌年の初頭の期間の総称である(具体的な期間は使用する場面によって異なる)。 当項目では日本における年末年始を主題として解説している。.

新しい!!: 分位数と年末年始 · 続きを見る »

クリスマス

リスマス()は、イエス・キリストの降誕(誕生)を祝う祭である(誕生日ではなく降誕を記念する日)『キリスト教大事典 改訂新版』350〜351頁、教文館、1977年 改訂新版第四版。毎年12月25日に祝われるが、正教会のうちユリウス暦を使用するものは、グレゴリオ暦の1月7日に該当する日にクリスマスを祝う()。ただし、キリスト教で最も重要な祭と位置づけられるのはクリスマスではなく、復活祭である正教会の出典:()カトリック教会の出典:(カトリック中央協議会)聖公会の出典:(日本聖公会 東京教区 主教 植田仁太郎)プロテスタントの出典:『キリスト教大事典』910頁、教文館、1973年9月30日 改訂新版第二版。 キリスト教に先立つユダヤ教の暦、ローマ帝国の暦、およびこれらを引き継いだ教会暦では日没を一日の境目としているので、クリスマス・イヴと呼ばれる12月24日夕刻から朝までも、教会暦上はクリスマスと同じ日に数えられる。教会では降誕祭といった表記もある。 一般的年中行事としても楽しまれ、ジングルベルなどのクリスマスソングは多くの人に親しまれている。.

新しい!!: 分位数とクリスマス · 続きを見る »

クリスマス・イヴ

リスマス・イヴ』1904年 - 1905年、 スウェーデン人画家のカール・ラーション(1853年 - 1919年)による水彩画。 クリスマス・イヴ()、クリスマス・イブは、クリスマスの前夜、すなわち12月24日の夜を指す英語の音訳である。「イヴ」() は「(夜、晩)」と同義の古語「」の語末音が消失したものである。 転じて、俗に12月24日全体を指すこともある。日常会話では単に「イヴ」と呼ばれることが多い。.

新しい!!: 分位数とクリスマス・イヴ · 続きを見る »

元日

元日(がんじつ)は年の最初の日。日付はグレゴリオ暦では1月1日(改暦前は旧暦正月一日)。元旦(がんたん)ともいうが、この場合は特にその日の朝を指すこともある日本国語大辞典第二版編集委員会・小学館国語辞典編集部編『日本国語大辞典』第二版、小学館。.

新しい!!: 分位数と元日 · 続きを見る »

床関数と天井関数

床関数(ゆかかんすう、floor function)と天井関数(てんじょうかんすう、ceiling function)は、実数に対しそれぞれそれ以下の最大あるいはそれ以上の最小の整数を対応付ける関数である。 “floor”や“ceiling”といった名称やその他の記法は、1962年にケネス・アイバーソンによって導入された。.

新しい!!: 分位数と床関数と天井関数 · 続きを見る »

ロバストネス

バストネスまたはロバスト性とは、ある系が応力や環境の変化といった外乱の影響によって変化することを阻止する内的な仕組み、または性質のこと。ロバストネスを持つような設計をロバスト設計、ロバストネスを最適化することをロバスト最適化という。 「頑強な」という意味の形容詞 "robust" が語源であり、他に頑強性、強靭性、堅牢性、強さ、などと呼称されることもある。.

新しい!!: 分位数とロバストネス · 続きを見る »

分散 (確率論)

率論および統計学において、分散(ぶんさん、variance)は、確率変数の2次の中心化モーメントのこと。これは確率変数の分布が期待値からどれだけ散らばっているかを示す非負の値である。 記述統計学においては標本が標本平均からどれだけ散らばっているかを示す指標として標本分散(ひょうほんぶんさん、sample variance)を、推測統計学においては不偏分散(ふへんぶんさん、unbiased (sample) variance)を用いる。 に近いほど散らばりは小さい。 日本工業規格では、「確率変数 からその母平均を引いた変数の二乗の期待値。 である。」と定義している。 英語の variance(バリアンス)という語はロナルド・フィッシャーが1918年に導入した。.

新しい!!: 分位数と分散 (確率論) · 続きを見る »

ソート

ート は、データの集合を一定の規則に従って並べること。日本語では整列(せいれつ)と訳される。(以前はその原義から分類という訳語が充てられていたが、もう使われていない) 主にコンピュータソフトにおけるリストに表示するデータに対し、全順序関係によって一列に並べることを指す。また、単に「ソート」といった場合、値の小さい方から大きい方へ順に並べる昇順(しょうじゅん、)を指すことが多い。その反対に値を大きい方から小さい方へ順に並べることを降順(こうじゅん、)という。 対象となるデータのデータ構造や必要な出力によって、使われるアルゴリズムは異なる。.

新しい!!: 分位数とソート · 続きを見る »

内挿

内挿(ないそう、、補間とも言う)とは、ある既知の数値データ列を基にして、そのデータ列の各区間の範囲内を埋める数値を求めること、またはそのような関数を与えること。またその手法を内挿法(補間法)という。内挿するためには、各区間の範囲内で成り立つと期待される関数と境界での振舞い(境界条件)を決めることが必要である。 最も一般的で容易に適用できるものは、一次関数(直線)による内挿(直線内挿)である。ゼロ次関数(ステップ関数)によってデータ列を埋めること(0次補間)を内挿と呼ぶことはあまりないが、内挿の一種である。 内挿と外挿(補外)とのアルゴリズムの類似性から、それぞれ内挿補間、外挿補間と誤って呼称されることがある。本来、補間と内挿は同義であり、内挿補間と重ねて呼ぶ必要はない。.

新しい!!: 分位数と内挿 · 続きを見る »

新年

新年(しんねん、)は世界各地で使われている暦年の新しい年の始めをいう。学年、会計年度上の新年という場合もある。.

新しい!!: 分位数と新年 · 続きを見る »

確率

率(かくりつ、)とは、偶然性を持つある現象について、その現象が起こることが期待される度合い、あるいは現れることが期待される割合のことをいう。確率そのものは偶然性を含まないひとつに定まった数値であり、発生の度合いを示す指標として使われる。.

新しい!!: 分位数と確率 · 続きを見る »

確率分布

率分布(かくりつぶんぷ, probability distribution)は、確率変数の各々の値に対して、その起こりやすさを記述するものである。日本工業規格では、「確率変数がある値となる確率,又はある集合に属する確率を与える関数」と定義している。.

新しい!!: 分位数と確率分布 · 続きを見る »

統計

統計(とうけい、)は、現象を調査することによって数量で把握すること、または、調査によって得られた数量データ(統計量)のことである。統計の性質を調べる学問は統計学である。.

新しい!!: 分位数と統計 · 続きを見る »

統計的ばらつき

統計的ばらつき(とうけいてきばらつき、Statistical Dispersion, Statistical Variability)は、データ群の様々な観点でのばらつきの尺度を表す。データの傾向を表す要約統計量は様々である。換言すれば、ばらつきとは母集団の各メンバーの測定値の差異の定量化である。.

新しい!!: 分位数と統計的ばらつき · 続きを見る »

要約統計量

要約統計量(ようやくとうけいりょう)とは、標本の分布の特徴を代表的に(要約して)表す統計学上の値であり、統計量の一種。記述統計量(descriptive statistics value)、基本統計量、代表値(representative value)ともいう 。 正規分布の場合は、平均と、分散または標準偏差で分布を記述できる。正規分布からのずれを知るためには、尖度や歪度などの高次モーメントから求められる統計量を用いる。 正規分布から著しく外れた場合には、より頑健な中央値、四分位点、最大値・最小値や最頻値が用いられる。「頑健」とは分布の非対称性や外れ値などの影響を受けにくいことを意味する統計用語である。例えば、労働者一人あたりの年収を例に採れば、最も収入が少なくても0未満にはならないのに対し、収入が多いほうでは数十億円という年収を稼ぐ少数者があり得る。この場合の分布は、少数者が上側にいることによって、上側に極端に尾を引いた非対称な分布となる。平均値はこれらの極端な高値の影響を受け、分布の代表値として適切でないものとなってしまう。中央値や最頻値では、いかに飛び抜けた値であっても1例としてしか扱われないので、より大多数の実感に近い値を示すことができる。.

新しい!!: 分位数と要約統計量 · 続きを見る »

近似値

近似値(きんじち)とは、必要とされる誤差の範囲内で、ある数を表していると思って構わない数値のこと。あるいはある数の情報を一部削って得られる値、すなわちある数値に対して端数処理を施した値(数値を「丸め」たもの)である。.

新しい!!: 分位数と近似値 · 続きを見る »

関数 (数学)

数学における関数(かんすう、、、、、函数とも)とは、かつては、ある変数に依存して決まる値あるいはその対応を表す式の事であった。この言葉はライプニッツによって導入された。その後定義が一般化されて行き、現代的には数の集合に値をとる写像の一種であると理解される。.

新しい!!: 分位数と関数 (数学) · 続きを見る »

自然数

自然数(しぜんすう、natural number)とは、個数、もしくは順番を表す一群の数のことである。集合論においては、自然数は物の個数を数える基数のうちで有限のものであると考えることもできるし、物の並べ方を示す順序数のうちで有限のものであると考えることもできる。 自然数を 1, 2, 3, … とする流儀と、0, 1, 2, 3, … とする流儀があり、前者は数論などでよく使われ、後者は集合論、論理学などでよく使われる(詳しくは自然数の歴史と零の地位の節を参照)。いずれにしても、0 を自然数に含めるかどうかが問題になるときは、その旨を明記する必要がある。自然数の代わりに非負整数または正整数と言い換えることによりこの問題を避けることもある。 数学の基礎付けにおいては、自然数の間の加法についての形式的な逆元を考えることによって整数を定義する。正の整数ないしは負でない整数を自然数と同一視し、自然数を整数の一部として取扱うことができる。自然数と同様に整数の全体も可算無限集合である。 なお、文脈によっては、その一群に属する個々の数(例えば 3 や 18)を指して自然数ということもある。.

新しい!!: 分位数と自然数 · 続きを見る »

標準偏差

標準偏差(ひょうじゅんへんさ、)は、日本工業規格では、分散の正の平方根と定義している。データや確率変数の散らばり具合(ばらつき)を表す数値のひとつ。物理学、経済学、社会学などでも使う。例えば、ある試験でクラス全員が同じ点数、すなわち全員が平均値の場合、データにはばらつきがないので、標準偏差は 0 になる。 母集団や確率変数の標準偏差を σ で、標本の標準偏差を s で表すことがある。二乗平均平方根 (RMS) と混同されることもある。両者の差異については、二乗平均平方根を参照。.

新しい!!: 分位数と標準偏差 · 続きを見る »

正規分布

率論や統計学で用いられる正規分布(せいきぶんぷ、normal distribution)またはガウス分布(Gaussian distribution)は、平均値の付近に集積するようなデータの分布を表した連続的な変数に関する確率分布である。中心極限定理により、独立な多数の因子の和として表される確率変数は正規分布に従う。このことにより正規分布は統計学や自然科学、社会科学の様々な場面で複雑な現象を簡単に表すモデルとして用いられている。たとえば実験における測定の誤差は正規分布に従って分布すると仮定され、不確かさの評価が計算されている。 また、正規分布の確率密度関数のフーリエ変換は再び正規分布の密度関数になることから、フーリエ解析および派生した様々な数学・物理の理論の体系において、正規分布は基本的な役割を果たしている。 確率変数 が1次元正規分布に従う場合、X \sim N(\mu, \sigma^) 、確率変数 が 次元正規分布に従う場合、X \sim N_n(\mu, \mathit) などと表記される。.

新しい!!: 分位数と正規分布 · 続きを見る »

漢数字

漢数字(かんすうじ)は、数を表記するのに使われる漢字である。十進法の数詞および位取り記数法で用いる。前者は漢字文化圏内で相違があるかもしれない。 中日新聞・東京新聞など、記事中(スポーツ面など一部を除く)でアラビア数字でなく漢数字を用い続けているメディアもある。.

新しい!!: 分位数と漢数字 · 続きを見る »

最大と最小

数学の様々な分野で順序が定まった対象に対し、最大のものや最小のものが考察されている。最大のものを表す標準的な記号として max、最小のものを表すものとして min が用いられる。この記事では最大・最小に関係した様々な話題を紹介する。.

新しい!!: 分位数と最大と最小 · 続きを見る »

日本規格協会

一般財団法人日本規格協会(にほんきかくきょうかい、英語名称:Japanese Standards Association、略称:JSA)は、日本工業規格(JIS)原案の作成、JIS規格票の発行、出版物(『JISハンドブック』等)の発行などを行う法人。東京にある本部や日本各地の支部では規格票の閲覧ができる。以前は経済産業省産業技術環境局所管の財団法人であったが、公益法人制度改革に伴い一般財団法人へ移行した。.

新しい!!: 分位数と日本規格協会 · 続きを見る »

数列

数学において数列(すうれつ、numerical sequence)とは、数が列になったもの (sequence of numbers) を言う。 ある数はそれ単独で興味深い性質や深い意味を持っているかもしれない。単独ではそれほど面白くはない数たちもまとめて考えると興味深い性質を持つかもしれない。数列を考える意識は後者に属する。数列とは例えば正の奇数を小さい順に並べた のような数の“並び”である。並べる数に制限を加えて、たとえば自然数のみを並べるならば、これを自然数列と略称する。整数、有理数、実数などのほかの数体系を用いる場合も同様の略称を用いる。各々の数の“置かれるべき場所”は数列の項 (こう、term) と呼ばれる。数の並びが数列と呼ばれるためには、数列の各項を“順番に並べる”こと、つまりそれぞれの数が何番目の項に配置されているのかを一意に示すように番号付けができなければならない。したがって、“最も簡単”な数列は自然数を小さい順に並べた数列 ということになる(これは自然数が順序数であることによる)。 考える数列に端が存在する場合がある。数列の端に存在する項は、その数列の最初の項、または最後の項であると考えることができる。数列の最初の項をその数列の初項(しょこう、first term)といい、最後の項を数列の末項(まっこう、last term)と呼ぶ。 数列に対して必ずしも初項と末項を定めることはできない。たとえば「すべての自然数」を表わす数列の項の数は「自然数の個数」に等しいが、自然数は無限に存在するため、その末項は存在しない。このように末項が定まらないような数列は、無限数列(むげんすうれつ、infinite sequence)と呼ばれ、末項を持つ数列は有限数列(ゆうげんすうれつ、finite sequence)と呼ばれる。 初項を表わす添字は自由に与えることができ、議論や計算を簡単にするように選ばれるが、慣習的に 0 または 1 が与えられることも多い。たとえば有限数列の初項の添字を 1 から始めた場合、末項は項数に等しい添字 が与えられるため、記述が簡単になる。 特別な数列には、項の並びに規則性のあるものがある。代表的なものは、等差数列や等比数列あるいはフィボナッチ数列のように漸化式で定義される数列である。.

新しい!!: 分位数と数列 · 続きを見る »

整数

数学における整数(せいすう、integer, whole number, Ganze Zahl, nombre entier, número entero)は、0 とそれに 1 ずつ加えていって得られる自然数 (1, 2, 3, 4, …) および 1 ずつ引いていって得られる数 (−1, −2, −3, −4, …) の総称である。 整数は数直線上の格子点として視覚化される 整数の全体からなる集合は普通、太字の Z または黒板太字の \mathbb Z で表す。これはドイツ語 Zahlen(「数」の意・複数形)に由来する。 抽象代数学、特に代数的整数論では、しばしば「代数体の整数環」の元という意味で代数的整数あるいは「整数」という言葉を用いる。有理数全体の成す体はそれ自身が代数体の最も簡単な例であり、有理数体の代数体としての整数環すなわち、「有理数の中で整なもの」の全体の成す環は、本項でいう意味での整数全体の成す環である。一般の「整数」との区別のためにここでいう意味の整数を有理整数 (rational integer) と呼ぶことがある接頭辞「有理(的)」(rational) はそもそも「整数比」であるという意味なので、この呼称は自己循環的にもみえる。しかし、有理整数と呼ぶ場合の「有理」は「有理数の中で」という程度の意味の単なる符牒であって、「整数比」という本来の意味合いに拘るのは徒労である。。.

新しい!!: 分位数と整数 · 続きを見る »

2018年

この項目では、国際的な視点に基づいた2018年について記載する。.

新しい!!: 分位数と2018年 · 続きを見る »

2019年

この項目では、国際的な視点に基づいた2019年について記載する。.

新しい!!: 分位数と2019年 · 続きを見る »

ここにリダイレクトされます:

%点パーセント点パーセンタイルクォンタイルタータイル三分位数五分位数五分位点十分位数十分位点分位分位値分位点四分位四分位値四分位数四分位点百分位数百分位点

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »