ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
インストール
ブラウザよりも高速アクセス!
 

低温物理学

索引 低温物理学

低温物理学(ていおんぶつりがく)は、絶対零度に非常に近い超低温領域における物理学の1分野である。この様な超低温では、熱的な擾乱が小さくなるために、凝縮系内の微小な相互作用や巨視的な量子効果による特異な現象が現れてくる。.

18 関係: 強相関電子系レーザー冷却ボース=アインシュタイン凝縮ヘイケ・カメルリング・オネスケルビンステンレス鋼センチメートル光電子分光絶対零度物理学物性物理学超伝導超流動近藤効果量子ホール効果液体ヘリウム断熱消磁3He-4He希釈冷凍法

強相関電子系

強相関電子系(きょうそうかんでんしけい、英:)とは固体物理学の用語で、物質の中でも電子どうしの間に働く有効なクーロン相互作用が強いものをこのように呼び表す。.

新しい!!: 低温物理学と強相関電子系 · 続きを見る »

レーザー冷却

レーザー冷却(レーザーれいきゃく)とは、レーザー光を用いて、気体分子の温度を絶対零度近くまで冷却する方法のこと。おもに、単原子分子、もしくは単原子イオンに用いられる。.

新しい!!: 低温物理学とレーザー冷却 · 続きを見る »

ボース=アインシュタイン凝縮

ボース=アインシュタイン凝縮(ボース=アインシュタインぎょうしゅく、Bose-Einstein condensation英語では、凝縮する過程を condensation、凝縮した状態を condensate と言い分ける場合もある。)、または略してBECとは、ある転移温度以下で巨視的な数のボース粒子が最低エネルギー状態に落ち込む相転移現象 上田 (1998) E.A. Cornel ''et al.'' (1999) F. Dalfavo ''et al.'' (1999) W. Kettelrle ''et al.'' (1999)。量子力学的なボース粒子の満たす統計性であるボース=アインシュタイン統計の性質から導かれる。BECの存在はアルベルト・アインシュタインの1925年の論文の中で予言されたA. Pais (2005), chapter.23 。粒子間の相互作用による他の相転移現象とは異なり、純粋に量子統計性から引き起こされる相転移であり、アインシュタインは「引力なしの凝縮」と呼んだ。粒子間相互作用が無視できる理想ボース気体に近い中性原子気体のBECは、アインシュタインの予言から70年経った1995年に実現された。1995年にコロラド大学の研究グループはルビジウム87(87Rb)、マサチューセッツ工科大学(MIT)の研究グループはナトリウム23(23Na)の希薄な中性アルカリ原子気体でのBECを実現させた。中性アルカリ原子気体でBECが起こる数マイクロKから数百ナノKという極低温状態の実現には、レーザー冷却などの冷却技術やなどの捕獲技術の確立が不可欠であった (free access) (free access)。2001年のノーベル物理学賞は、これらのBEC実現の実験的成果に対し、授与された。.

新しい!!: 低温物理学とボース=アインシュタイン凝縮 · 続きを見る »

ヘイケ・カメルリング・オネス

ヘイケ・カマリン・オンネス(Heike Kamerlingh Onnes, 1853年9月21日-1926年2月21日) はオランダの物理学者である。日本ではカーメルリング・オンネス、カマリン・オンネス、カマリン・オネスなど様々にカナ表記されている。ヘリウムの液化に成功、超伝導の発見など、低温物理学の先駆者として知られている。1913年にノーベル物理学賞を受賞した。.

新しい!!: 低温物理学とヘイケ・カメルリング・オネス · 続きを見る »

ケルビン

ルビン(kelvin, 記号: K)は、熱力学温度(絶対温度)の単位である。国際単位系 (SI) において基本単位の一つとして位置づけられている。 ケルビンの名は、イギリスの物理学者で、絶対温度目盛りの必要性を説いたケルビン卿ウィリアム・トムソンにちなんで付けられた。なお、ケルビン卿の通称は彼が研究生活を送ったグラスゴーにあるから取られている。.

新しい!!: 低温物理学とケルビン · 続きを見る »

ステンレス鋼

テンレス鋼(ステンレスこう、stainless steel)とは、クロム、またはクロムとニッケルを含む、さびにくい合金鋼である。ISO規格では、炭素含有量 1.2 %(質量パーセント濃度)以下、クロム含有量 10.5 % 以上の鋼と定義される。名称は、省略してステンレスという名称でもよく呼ばれる。かつては不銹鋼(ふしゅうこう)と呼ばれていた。.

新しい!!: 低温物理学とステンレス鋼 · 続きを見る »

センチメートル

ンチメートル(記号cm)は、国際単位系(SI)の長さの単位で、メートル(m)に相当する。基本単位のメートルとを表す接頭辞センチを組み合わせた単位である。.

新しい!!: 低温物理学とセンチメートル · 続きを見る »

光電子分光

光電子分光(こうでんしぶんこう、photoemission spectroscopy)とは、固体に一定エネルギーの電磁波をあて、光電効果によって外に飛び出してきた電子(光電子とよばれる)のエネルギーを測定し、固体の電子状態を調べる方法である。 測定対象となる物質は主に金属や半導体であり、絶縁体はチャージアップの関係から測定には不向きである. カイ・シーグバーン (Kai M. Siegbahn) は高分解能光電子分光法の開発で1981年のノーベル物理学賞を受賞している。.

新しい!!: 低温物理学と光電子分光 · 続きを見る »

絶対零度

絶対零度(ぜったいれいど、Absolute zero)とは、絶対温度の下限で、理想気体のエントロピーとエンタルピーが最低値になった状態、つまり 0 度を表す。理想気体の状態方程式から導き出された値によるとケルビンやランキン度の0 度は、セルシウス度で −273.15 ℃、ファーレンハイト度で −459.67 である。 絶対零度は最低温度とされるが、エンタルピーは0にはならない。統計力学では0 K未満の負温度が存在する。.

新しい!!: 低温物理学と絶対零度 · 続きを見る »

物理学

物理学(ぶつりがく, )は、自然科学の一分野である。自然界に見られる現象には、人間の恣意的な解釈に依らない普遍的な法則があると考え、自然界の現象とその性質を、物質とその間に働く相互作用によって理解すること(力学的理解)、および物質をより基本的な要素に還元して理解すること(原子論的理解)を目的とする。化学、生物学、地学などほかの自然科学に比べ数学との親和性が非常に強い。 古代ギリシアの自然学 にその源があり, という言葉も、元々は自然についての一般的な知識の追求を意味しており、天体現象から生物現象までを含む幅広い概念だった。現在の物理現象のみを追求する として自然哲学から独立した意味を持つようになったのは19世紀からである。 物理学の古典的な研究分野は、物体の運動、光と色彩、音響、電気と磁気、熱、波動、天体の諸現象(物理現象)である。.

新しい!!: 低温物理学と物理学 · 続きを見る »

物性物理学

物性物理学(ぶっせいぶつりがく)は、物質のさまざまな巨視的性質を微視的な観点から研究する物理学の分野。量子力学や統計力学を理論的基盤とし、その理論部門を物性論(ぶっせいろん)と呼ぶことも多い。これらは日本の物理学界独特の名称であるが、しばしば凝縮系物理学に比定される。狭義には固体物理学を指し、広義には固体物理学(結晶・アモルファス・合金)およびソフトマター物理学・表面物理学・物理化学、プラズマ・流体力学などの周辺分野を含む。.

新しい!!: 低温物理学と物性物理学 · 続きを見る »

超伝導

超伝導(ちょうでんどう、superconductivity)とは、特定の金属や化合物などの物質を非常に低い温度へ冷却したときに、電気抵抗が急激にゼロになる現象。「超電導」と表記されることもある。1911年、オランダの物理学者ヘイケ・カメルリング・オンネスにより発見された。この現象と同時に、マイスナー効果により外部からの磁力線が遮断されることから、電気抵抗の測定によらなくとも、超伝導状態が判別できる。この現象が現れるときの温度は超伝導転移温度と呼ばれ、この温度を室温程度に上昇させること(室温超伝導)は、現代物理学の重要な研究目標の一つ。.

新しい!!: 低温物理学と超伝導 · 続きを見る »

超流動

超流動(英語:superfluidity)とは、極低温において液体ヘリウムの流動性が高まり、容器の壁面をつたって外へ溢れ出たり、原子一個が通れる程度の隙間に浸透したりする現象で、量子効果が巨視的に現れたものである。1937年、ヘリウム4が超流動性を示すことをピョートル・カピッツァが発見した。.

新しい!!: 低温物理学と超流動 · 続きを見る »

近藤効果

近藤効果(こんどうこうか、Kondo effect)とは、磁性を持った極微量な不純物(普通磁性のある鉄原子など)がある金属では、温度を下げていくとある温度以下で電気抵抗が上昇に転じる現象である。これは通常の金属の、温度を下げていくとその電気抵抗も減少していくという一般的な性質とは異なっている。現象そのものは電気抵抗極小現象とよばれ、1930年頃から知られていたが、その物理的機構は1964年に日本の近藤淳が初めて理論的に解明した。近藤はこの仕事により1973年に日本学士院恩賜賞を受章した。.

新しい!!: 低温物理学と近藤効果 · 続きを見る »

量子ホール効果

量子ホール効果(りょうしホールこうか、quantum hall effect)は、半導体‐絶縁体界面や半導体のヘテロ接合などで実現される、2次元電子系に対し強い磁場(強磁場)を印加すると、電子の軌道運動が量子化され、エネルギー準位が離散的な値に縮退し、ランダウ準位が形成される現象を指す。ランダウ準位の状態密度は実際の試料では不純物の影響によってある程度の広がりを持つ。この時、フェルミ準位の下の電子は、波動関数が空間的に局在するようになる。これをアンダーソン局在という。 そして絶対温度がゼロ度(.

新しい!!: 低温物理学と量子ホール効果 · 続きを見る »

液体ヘリウム

容器の中の液体ヘリウム ヘリウムは、-269 ℃(約4 K)という極低温で液体として存在する。ヘリウムの安定な同位体には大多数を占めるヘリウム4と非常に希少なヘリウム3の2種類しかないが、沸点や臨界点は、同位体によって異なる。1気圧、沸点でのヘリウム4の密度は、約125 g/lである。 物性研究においても特に超伝導体や高磁場を発生する電磁石の冷却のために寒剤として多用される。このため規模の大きい大学や研究機関では、利便性の向上やコスト低減のために利用後の気化したヘリウムの回収配管とともに液化装置を所有していることが多い。.

新しい!!: 低温物理学と液体ヘリウム · 続きを見る »

断熱消磁

断熱消磁(だんねつしょうじ)は極低温領域での冷却法の一つ。液体ヘリウムを用いた蒸発冷却や希釈冷凍では冷やせない超低温の冷却が可能である。 零磁場下の常磁性体のスピンは任意の方向を向きその磁化は零である。強い磁場下にある常磁性体を十分冷却した後、断熱状態で磁場を下げる。この時、断熱状態であるためエントロピーは変化しないが磁化は小さくなる。磁化と温度は比例関係にあるため、磁場が下がった分、常磁性体の温度は下がる。 銅の核スピンを利用した核断熱消磁法では10T程度の磁場下で10mK程度まで冷却し、0.1mK以下の温度の生成が行われている。.

新しい!!: 低温物理学と断熱消磁 · 続きを見る »

3He-4He希釈冷凍法

He濃厚相(C相)、緑色が希薄相(D相)にあたる -希釈冷凍法(-きしゃくれいとうほう、)とは、ヘリウムの二つの同位体、HeとHeをそれぞれ液化し、相を相に注ぎ希釈する際の希釈熱を利用する冷却法である。極低温領域での冷却法のひとつ。液体ヘリウムの蒸発潜熱を使った冷却では到達できない、さらに低温の冷却を行う。現在 以下の極低温を連続的に実現する唯一の方法である。 中へのの溶解度はおよそ6.6%である。極低温では、との蒸気圧は異なり、溶媒のの中から選択的にを蒸発させる事ができる。すると、中の濃度が低下するので、は引き続きを溶解させることができ、-混合液が潜熱を奪い続けて、冷却をする。蒸発させたは回収し、液化させたのち、再びに溶解させて繰り返し使うことができる。.

新しい!!: 低温物理学と3He-4He希釈冷凍法 · 続きを見る »

ここにリダイレクトされます:

低温学低温物理

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »