ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
無料
ブラウザよりも高速アクセス!
 

ルジャンドル変換

索引 ルジャンドル変換

ルジャンドル変換(ルジャンドルへんかん、Legendre transformation)とは、凸解析において、関数の変数を変えるために用いられる変換である。名前はフランスの数学者、アドリアン=マリ・ルジャンドルに因む。ルジャンドル変換は点と線の双対性、つまり下に凸な関数 は の点の集合によって表現できるが、それらの傾きと切片の値で指定される接線の集合によっても等しく充分に表現できることに基いている。 ルジャンドルは解析力学におけるラグランジアンをハミルトニアンに変換する際にルジャンドル変換を用いた。他にも、熱力学における熱力学関数間の変換など、物理学において広く応用されている。 ルジャンドル変換の一般化としてルジャンドル=フェンシェル変換がある(ルジャンドル=フェンシェル変換については凸共役性を参照)。.

46 関係: 培風館偏微分単調写像双対変換 (数学)変数変数 (数学)定義一般化座標系体積圧力ハミルトン力学ハミルトニアンヤングの不等式ラグランジュ力学フランス切片 (数学)アドリアン=マリ・ルジャンドルエントロピーエンタルピーオイラー=ラグランジュ方程式シンプレクティック幾何学傾き (数学)内部エネルギー凸共役性凸解析凸関数点 (数学)熱力学熱力学ポテンシャル物理学解析力学関数 (数学)自由エネルギー集合連続 (数学)逆写像接線東京大学出版会温度滑らかな関数最大と最小最小作用の原理方程式数学者曲線

培風館

株式会社培風館(ばいふうかん)は、理学、工学、心理学などの大学向け教科書を中心とした出版社である。 創業者は山本慶治(1881-1963)。山本は兵庫県の豪農の家に生まれ、1908年東京高等師範学校英語科卒、1910年同教育研究科修了、奈良女子高等師範学校講師。岡本米蔵の紐育土地会社に勤務、その出版部門常務となり、1938年培風館として独立。当初は東京高等師範学校の教科書を刊行していた。1962年その長男の山本俊一(1910-2008、東大工学部卒)が社長となり、67年次男の山本健二(1912-93)が継ぐ。健二の死後その子の山本格が社長となる。.

新しい!!: ルジャンドル変換と培風館 · 続きを見る »

偏微分

数学の多変数微分積分学における偏微分(へんびぶん、partial derivative)は、多変数関数に対して一つの変数のみに関する(それ以外の変数は)微分である(全微分では全ての変数を動かしたままにするのと対照的である)。偏微分はベクトル解析や微分幾何学などで用いられる。 函数 の変数 に関する偏微分は など様々な表し方がある。一般に函数の偏微分はもとの函数と同じ引数を持つ函数であり、このことを のように記法に明示的に含めてしまうこともある。偏微分記号 ∂ が数学において用いられた最初の例の一つは、1770年以降マルキ・ド・コンドルセによるものだが、それは偏差分の意味で用いられたものである。現代的な偏微分記法はアドリアン=マリ・ルジャンドル が導入しているが、後が続かなかった。これを1841年に再導入するのがカール・グスタフ・ヤコブ・ヤコビである。 偏微分は方向微分の特別の場合である。また無限次元の場合にこれらはガトー微分に一般化される。.

新しい!!: ルジャンドル変換と偏微分 · 続きを見る »

単調写像

単調写像(たんちょうしゃぞう、monotonic function, monotone function)または単調関数は、単調性、すなわち順序集合の間の写像が順序を保つような性質を持つ写像のことである。具体的な例としては以下の単調増加関数および単調減少関数がある。 単調増加(たんちょうぞうか、monotonically increasing)とは、狭義には実数の値を持つ関数 が、 の増加につれて常に関数値 も増加することをいい、このような性質を持つ関数を単調増加関数(たんちょうぞうかかんすう、monotonically increasing function)と呼ぶ。同様に、引数 の増加につれて関数値 が常に減少することを単調減少(たんちょうげんしょう、monotonically decreasing)といい、そのような性質を持つ関数を単調減少関数(たんちょうげんしょうかんすう、monotonically decreasing function)と呼ぶ。従って、連続な単調増加関数 を縦軸、その引数 を横軸にとったグラフ上の曲線は常に右上りで、右下がりになっている部分がない。逆に単調減少関数の場合には、常に右下がりであり右上がりの部分がない。 ある関数が単調増加または単調減少する性質をまとめて単調性(たんちょうせい、monotonicity)と呼ぶ。.

新しい!!: ルジャンドル変換と単調写像 · 続きを見る »

双対

双対(そうつい、dual, duality)とは、互いに対になっている2つの対象の間の関係である。2つの対象がある意味で互いに「裏返し」の関係にあるというようなニュアンスがある(双対の双対はある意味で "元に戻る")。また、2つのものが互いに双対の関係にあることを「双対性がある」などとよぶ。双対は数学や物理学をはじめとする多くの分野に表れる。 なお読みについて、双対を「そうたい」と読む流儀もあり「相対 (relative)」と紛らわしい。並行して相対を「そうつい」と読む流儀もある。一般には「双対」を「そうつい」、「相対」を「そうたい」と呼び分ける場合が多いようである。 双対の具体的な定義は、双対関係の成立している対象の種類によって様々に与えられる。.

新しい!!: ルジャンドル変換と双対 · 続きを見る »

変換 (数学)

数学的意味での変換(へんかん、transformation)とは、点を他の点に移したり、式を他の式に変えたり、座標を取り替えたりすること。.

新しい!!: ルジャンドル変換と変換 (数学) · 続きを見る »

変数

変数(variable).

新しい!!: ルジャンドル変換と変数 · 続きを見る »

変数 (数学)

数学、特に解析学において変数(へんすう、variable)とは、未知あるいは不定の数・対象を表す文字記号のことである。代数学の文脈では不定元(ふていげん、indeterminate)の意味で変数と言うことがしばしばある。方程式において、特別な値をとることがあらかじめ期待されている場合、(みちすう)とも呼ばれる。また、記号論理学などでは(変数の表す対象が「数」に限らないという意味合いを込めて)変項(へんこう)とも言う。.

新しい!!: ルジャンドル変換と変数 (数学) · 続きを見る »

定義

定義(ていぎ)は、一般にコミュニケーションを円滑に行うために、ある言葉の正確な意味や用法について、人々の間で共通認識を抱くために行われる作業。一般的にそれは「○○とは・・・・・である」という言い換えの形で行われる。基本的に定義が決められる場合は1つである。これは、複数の場合、矛盾が生じるからである。.

新しい!!: ルジャンドル変換と定義 · 続きを見る »

一般化座標系

一般化座標系(いっぱんかざひょうけい、)は、解析力学において、特定の条件に順ずる物体の運動について、その位置を表すのになるべく少ない変数を用いたり、または簡単で直感的に扱うことができるように、角度や既知の任意の曲線上の距離で表される変数を用いて表される座標系である。デカルト座標系に対して用いられ、これを包括する。 一般化座標は、一般に q_n(n.

新しい!!: ルジャンドル変換と一般化座標系 · 続きを見る »

体積

体積(たいせき)とは、ある物体が 3 次元の空間でどれだけの場所を占めるかを表す度合いである。和語では嵩(かさ)という。.

新しい!!: ルジャンドル変換と体積 · 続きを見る »

圧力

圧力(あつりょく、pressure)とは、.

新しい!!: ルジャンドル変換と圧力 · 続きを見る »

ハミルトン力学

ハミルトン力学(ハミルトンりきがく、英語:Hamiltonian mechanics)は、一般化座標と一般化運動量を基本変数として記述された古典力学である。イギリスの物理学者ウィリアム・ローワン・ハミルトンが創始した。ラグランジュ力学と同様にニュートン力学を再公式化した解析力学の一形式。.

新しい!!: ルジャンドル変換とハミルトン力学 · 続きを見る »

ハミルトニアン

ハミルトニアン(Hamiltonian)あるいはハミルトン関数、特性関数(とくせいかんすう)は、物理学におけるエネルギーに対応する物理量である。各物理系の持つ多くの性質は、ハミルトニアンによって特徴づけられる。名称はイギリスの物理学者ウィリアム・ローワン・ハミルトンに因む。 ここでは、古典力学(解析力学)と量子力学の2つの体系に分けて説明するが、量子力学が古典力学から発展した経緯から、両者は密接に関連する。ハミルトニアンはそれぞれの体系に応じて関数または演算子もしくは行列の形式をとる。例えば、古典力学においてはハミルトニアンは正準変数の関数であり、量子力学では正準変数を量子化した演算子(もしくは行列)の形をとる。.

新しい!!: ルジャンドル変換とハミルトニアン · 続きを見る »

ヤングの不等式

ヤングの不等式(-ふとうしき、Young's inequality)とは、積とべき乗の和との間に成り立つ不等式であり、様々な分野で広く用いられている。 a,bを非負値な実数、1 ab \le \frac + \frac.

新しい!!: ルジャンドル変換とヤングの不等式 · 続きを見る »

ラグランジュ力学

ラグランジュ力学(英語:Lagrangian mechanics)は、一般化座標とその微分を基本変数として記述された古典力学である。フランスの物理学者ジョゼフ=ルイ・ラグランジュが創始した。後のハミルトン力学と同様にニュートン力学を再定式化した解析力学の一形式である。.

新しい!!: ルジャンドル変換とラグランジュ力学 · 続きを見る »

フランス

フランス共和国(フランスきょうわこく、République française)、通称フランス(France)は、西ヨーロッパの領土並びに複数の海外地域および領土から成る単一主権国家である。フランス・メトロポリテーヌ(本土)は地中海からイギリス海峡および北海へ、ライン川から大西洋へと広がる。 2、人口は6,6600000人である。-->.

新しい!!: ルジャンドル変換とフランス · 続きを見る »

切片 (数学)

切片(せっぺん、intercept)とは、座標平面上の曲線などのグラフと座標軸の交点のことである青本和彦、上野健爾、加藤和也、神保道夫、砂田利一、高橋陽一郎、深谷賢治、俣野博、室田一雄 編著、『』、岩波書店、2005年、「切片」より。ISBN 4-00-080209-7。 x軸との交点を ''x''切片、y軸との交点を ''y''切片と呼ぶ。x切片の x座標を a、y切片の y座標を b とすると、x軸との交点の座標は (a, 0)、y軸との交点の座標は (0, b) である。a は与えられた関数の根であり、y切片 b は関数の x.

新しい!!: ルジャンドル変換と切片 (数学) · 続きを見る »

アドリアン=マリ・ルジャンドル

アドリアン=マリ・ルジャンドル(Adrien-Marie Legendre、1752年9月18日 - 1833年1月10日)は、フランスのパリトゥールーズ出身ともされる。出身の数学者。統計学、数論、代数学、解析学で様々な功績を残した。中でも整数論や楕円積分に大きく貢献したとして名高い。.

新しい!!: ルジャンドル変換とアドリアン=マリ・ルジャンドル · 続きを見る »

エントロピー

ントロピー(entropy)は、熱力学および統計力学において定義される示量性の状態量である。熱力学において断熱条件下での不可逆性を表す指標として導入され、統計力学において系の微視的な「乱雑さ」「でたらめさ」と表現されることもある。ここでいう「でたらめ」とは、矛盾や誤りを含んでいたり、的外れであるという意味ではなく、相関がなくランダムであるという意味である。を表す物理量という意味付けがなされた。統計力学での結果から、系から得られる情報に関係があることが指摘され、情報理論にも応用されるようになった。物理学者ののようにむしろ物理学におけるエントロピーを情報理論の一応用とみなすべきだと主張する者もいる。 エントロピーはエネルギーを温度で割った次元を持ち、SIにおける単位はジュール毎ケルビン(記号: J/K)である。エントロピーと同じ次元を持つ量として熱容量がある。エントロピーはサディ・カルノーにちなんで一般に記号 を用いて表される。.

新しい!!: ルジャンドル変換とエントロピー · 続きを見る »

エンタルピー

ンタルピー()とは、熱力学における示量性状態量のひとつである。熱含量()とも。エンタルピーはエネルギーの次元をもち、物質の発熱・吸熱挙動にかかわる状態量である。等圧条件下にある系が発熱して外部に熱を出すとエンタルピーが下がり、吸熱して外部より熱を受け取るとエンタルピーが上がる。 名称が似ているエントロピー()とは全く異なる物理量である。.

新しい!!: ルジャンドル変換とエンタルピー · 続きを見る »

オイラー=ラグランジュ方程式

イラー=ラグランジュ方程式(オイラー=ラグランジュほうていしき、Euler–Lagrange equation)は汎関数の停留値を与える関数を求める微分方程式である。 オイラーとラグランジュらの仕事により1750年代に発展した。 単に、オイラー方程式、ラグランジュ方程式とも呼ばれる。 ニュートン力学における運動方程式をより数学的に洗練された方法で定式化しなおしたもので、物理学上重要な微分方程式である。 オイラー=ラグランジュ方程式を基礎方程式としたニュートン力学の定式化をラグランジュ形式の解析力学と呼ぶ。.

新しい!!: ルジャンドル変換とオイラー=ラグランジュ方程式 · 続きを見る »

シンプレクティック幾何学

ンプレクティック幾何学(シンプレクティックきかがく、symplectic geometry)とは、シンプレクティック多様体上で展開される幾何学をいう。シンプレクティック幾何学は解析力学を起源とするが、現在では大域解析学の一分野でもあり、可積分系・非可換幾何学・代数幾何学などとも深い繋がりを持つ。また、弦理論や超対称性との関わりも盛んに研究がなされている。.

新しい!!: ルジャンドル変換とシンプレクティック幾何学 · 続きを見る »

傾き (数学)

数学における平面上の直線の傾き(かたむき、slope)あるいは勾配(こうばい、gradient)は、その傾斜の具合を表す数値である。ただし、鉛直線に対する傾きは定義されない。 傾きは普通、直線上の2点間の変化の割合、すなわち x の増加量に対する y の増加量の比率として定義される。また、同値な定義として、傾き m は傾斜角を θ として と書くことができる。 曲線上の微分可能な1点に対しても、傾斜の具合を表す数値(微分係数)が、傾きの考え方により定義できる。 傾きの概念は、地理学および土木工学における斜度や勾配(たとえば道路など)に直接応用される。.

新しい!!: ルジャンドル変換と傾き (数学) · 続きを見る »

内部エネルギー

内部エネルギー(ないぶエネルギー、)は、系の熱力学的な状態を表現する、エネルギーの次元をもつ示量性状態量の一つである。系が全体として持っている力学的エネルギー(運動エネルギーと位置エネルギー)に対する用語として、内部エネルギーと呼ばれる。 記号は や で表されることが多い。.

新しい!!: ルジャンドル変換と内部エネルギー · 続きを見る »

凸共役性

数学において凸共役(とつきょうやく、)とは、ルジャンドル変換の一般化である。ルジャンドル=フェンシェル変換あるいはフェンシェル変換としても知られる(アドリアン=マリ・ルジャンドルとの名にちなむ)。.

新しい!!: ルジャンドル変換と凸共役性 · 続きを見る »

凸解析

凸解析 (とつかいせき) は、凸関数および凸集合を研究する数学の一分野である。最適化理論の領域の中の凸最小化によく応用される。.

新しい!!: ルジャンドル変換と凸解析 · 続きを見る »

凸関数

凸関数(とつかんすう、convex function)、下に凸関数 とは、ある区間で定義された実数値関数 で、区間内の任意の 2 点 と開区間 内の任意の に対して を満たすものをいう。言い換えれば、エピグラフ(グラフ上およびグラフの上部の点の集合)が凸集合である関数である。より一般に、ベクトル空間の凸集合上定義された関数に対しても同様に定義する。 また、狭義凸関数とは、任意の異なる 2 点 と開区間 内の任意の に対して を満たす関数である(従って、下に凸な関数の事である)。 が凸関数のとき、 を凹関数(おうかんすう、)と呼ぶ。凸関数を「下に凸な関数」、凹関数を「上に凸な関数」と称することもある。.

新しい!!: ルジャンドル変換と凸関数 · 続きを見る »

点 (数学)

数学における点(てん、point)の概念は、今日では非常に広範な意味を持つものとして扱われる。歴史的には、「点」というものは、古代ギリシアの幾何学者が想定したように、直線・平面・空間を形作る根元的な「構成要素」、「原子」となるべきものであり、直線、平面、空間は点からなる集合(点集合)ということになる。しかし、19世紀の終わりごろにゲオルク・カントールによる集合論の創始と、それに続く数多くの「数学的構造」の出現があって以降は、その文脈で「空間」と呼ぶことにした任意の集合における任意の元という意味で「点」という用語が用いられる(例えば、距離空間の点、位相空間の点、射影空間の点、など)。古代ギリシア人は「点」と「数」とを区別して扱ったが、それとは対照的に、この文脈では「数(実数)」は実数直線上の点であるという言い回しを用いることができる。 つまり数学者にとって最も一般の意味での「点」とは、集合が「空間」と捉えられかつ公理によって規定される特定の性質を備えているという状況さえあれば十分で、そのような「空間」の任意の元がすなわち「点」なのである。したがって、今日における術語「空間」は全体集合に、また術語「点」は元に、ほぼ同義である。考えている問題がもはや幾何学とは何の関係もないような場合でさえ、何らかの示唆的な期待によって「点」や「空間」という語が用いられている。.

新しい!!: ルジャンドル変換と点 (数学) · 続きを見る »

熱力学

熱力学(ねつりきがく、thermodynamics)は、物理学の一分野で、熱や物質の輸送現象やそれに伴う力学的な仕事についてを、系の巨視的性質から扱う学問。アボガドロ定数個程度の分子から成る物質の巨視的な性質を巨視的な物理量(エネルギー、温度、エントロピー、圧力、体積、物質量または分子数、化学ポテンシャルなど)を用いて記述する。 熱力学には大きく分けて「平衡系の熱力学」と「非平衡系の熱力学」がある。「非平衡系の熱力学」はまだ、限られた状況でしか成り立たないような理論しかできていないので、単に「熱力学」と言えば、普通は「平衡系の熱力学」のことを指す。両者を区別する場合、平衡系の熱力学を平衡熱力学、非平衡系の熱力学を非平衡熱力学 と呼ぶ。 ここでいう平衡 とは熱力学的平衡、つまり熱平衡、力学的平衡、化学平衡の三者を意味し、系の熱力学的(巨視的)状態量が変化しない状態を意味する。 平衡熱力学は(すなわち通常の熱力学は)、系の平衡状態とそれぞれの平衡状態を結ぶ過程とによって特徴付ける。平衡熱力学において扱う過程は、その始状態と終状態が平衡状態であるということを除いて、系の状態に制限を与えない。 熱力学と関係の深い物理学の分野として統計力学がある。統計力学は熱力学を古典力学や量子力学の立場から説明する試みであり、熱力学と統計力学は体系としては独立している。しかしながら、系の平衡状態を統計力学的に記述し、系の状態の遷移については熱力学によって記述するといったように、一つの現象や定理に対して両者の結果を援用している 。しかしながら、アインシュタインはこの手法を否定している。.

新しい!!: ルジャンドル変換と熱力学 · 続きを見る »

熱力学ポテンシャル

熱力学ポテンシャル(ねつりきがくポテンシャル、thermodynamic potential)とは、熱力学において、系の平衡状態における熱力学的性質の情報を全て持つ示量性状態量である。完全な熱力学関数とも呼ばれる。 ポテンシャルという名前がつけられているが、エネルギーの次元をもつことに注意。.

新しい!!: ルジャンドル変換と熱力学ポテンシャル · 続きを見る »

物理学

物理学(ぶつりがく, )は、自然科学の一分野である。自然界に見られる現象には、人間の恣意的な解釈に依らない普遍的な法則があると考え、自然界の現象とその性質を、物質とその間に働く相互作用によって理解すること(力学的理解)、および物質をより基本的な要素に還元して理解すること(原子論的理解)を目的とする。化学、生物学、地学などほかの自然科学に比べ数学との親和性が非常に強い。 古代ギリシアの自然学 にその源があり, という言葉も、元々は自然についての一般的な知識の追求を意味しており、天体現象から生物現象までを含む幅広い概念だった。現在の物理現象のみを追求する として自然哲学から独立した意味を持つようになったのは19世紀からである。 物理学の古典的な研究分野は、物体の運動、光と色彩、音響、電気と磁気、熱、波動、天体の諸現象(物理現象)である。.

新しい!!: ルジャンドル変換と物理学 · 続きを見る »

解析力学

解析力学(かいせきりきがく、英語:analytical mechanics)とは、ニュートン力学を数学の解析学の手法を用いて記述する、数学的に洗練された形式。解析力学の体系は基本的にはラグランジュ力学とハミルトン力学により構成される。 力のつりあいについてのダランベールの原理から始め、つりあいを微小な変位による仕事の関係式に置き換える仮想仕事の原理によってエネルギーの問題に移した。 幾何光学における変分原理であるフェルマーの原理からの類推で、古典力学において最小作用の原理(モーペルテューイの原理)が発見された。これにより、力学系の問題は、作用積分とよばれる量を最小にするような軌道をもとめる数学の問題になった。 座標を一般化座標に拡張し、ラグランジュ方程式が導き出された。 さらに、ラグランジアンから一般化運動量を定め、座標と運動量のルジャンドル変換によって、ハミルトン力学が導かれた。 ラグランジュ方程式は微分方程式を与えるのに対して、ハミルトンの正準方程式は積分を与える。 さらにこれから、ハミルトン・ヤコビの偏微分方程式が、得られる。 ラグランジュ形式は微分幾何学とも相性がよく、相対性理論の分野では必須である。 ハミルトン形式はその後の量子力学とくに行列力学へと続く。.

新しい!!: ルジャンドル変換と解析力学 · 続きを見る »

関数 (数学)

数学における関数(かんすう、、、、、函数とも)とは、かつては、ある変数に依存して決まる値あるいはその対応を表す式の事であった。この言葉はライプニッツによって導入された。その後定義が一般化されて行き、現代的には数の集合に値をとる写像の一種であると理解される。.

新しい!!: ルジャンドル変換と関数 (数学) · 続きを見る »

自由エネルギー

自由エネルギー(じゆうエネルギー、)とは、熱力学における状態量の1つであり、化学変化を含めた熱力学的系の等温過程において、系の最大仕事(潜在的な仕事能力)、自発的変化の方向、平衡条件などを表す指標となるChang『生命科学系のための物理化学』 pp.63-65アトキンス『物理化学(上)』 pp.120-125。 自由エネルギーは1882年にヘルマン・フォン・ヘルムホルツが提唱した熱力学上の概念で、呼称は彼の命名による。一方、等温等圧過程の自由エネルギーと化学ポテンシャルとの研究はウィラード・ギブズにより理論展開された。 等温等積過程の自由エネルギーはヘルムホルツの自由エネルギー()と呼ばれ、等温等圧過程の自由エネルギーはギブズの自由エネルギー()と呼びわけられる。ヘルムホルツ自由エネルギーは F で表記され、ギブズ自由エネルギーは G で表記されることが多い。両者の間には G.

新しい!!: ルジャンドル変換と自由エネルギー · 続きを見る »

集合

数学における集合 (しゅうごう、set, ensemble, Menge) とは、大雑把に言えばいくつかの「もの」からなる「集まり」である。集合を構成する個々の「もの」のことを元 (げん、; 要素) という。 集合は、集合論のみならず現代数学全体における最も基本的な概念の一つであり、現代数学のほとんどが集合と写像の言葉で書かれていると言ってよい。 慣例的に、ある種の集合が系 (けい、) や族 (ぞく、) などと呼ばれることもある。実際には、これらの呼び名に本質的な違いはないが細かなニュアンスの違いを含むと考えられている。たとえば、方程式系(「相互に連立する」方程式の集合)、集合族(「一定の規則に基づく」集合の集合)、加法族(「加法的な性質を持つ」集合族)など。.

新しい!!: ルジャンドル変換と集合 · 続きを見る »

連続 (数学)

数学において、連続(れんぞく、continuous)および連続性(れんぞくせい、continuity)とは、いくら拡大しても近くにあって差が無いことを示す極限概念である。位相空間のあいだの写像について、開集合や極限といった位相的な概念を一定の方法でたもつという条件によって連続性の概念が定められる。これは異なる位相空間のあいだの関係を表す最も基本的な枠組みである。日常語としては「連続」が「切れずに繋がっている」という意味で使われることがあるが、位相空間の性質として「切れずに繋がっている」ということを表す概念は「連結性」である。事実として「連結領域の連続像は必ず連結」であり、従って連結な定義域を持つ連続函数のグラフは文字通り「切れずに繋がっている」ことになるが、それは連続性の本質ではない。.

新しい!!: ルジャンドル変換と連続 (数学) · 続きを見る »

逆写像

数学における逆写像(ぎゃくしゃぞう、inverse mapping)は一口に言えば写像の与える元の対応関係を「反対」にして得られる写像である。すなわち、写像 が を に写すならば、 の逆写像は を に写し戻す。 函数と呼ばれる種類の写像の逆写像は、逆函数 (inverse function) と呼ばれる。.

新しい!!: ルジャンドル変換と逆写像 · 続きを見る »

接線

初等幾何学において接する(せっする、tangent)とは、その名を「触れること」を意味するtangere に由来し、「ただ触れるだけ」という直観的概念を定式化するものである。特に、曲線の接線(せっせん、tangent line, tangent)は、平面曲線に対しては、曲線上の一点が与えられたとき、その点において曲線に「ただ触れるだけ」の直線を意味する。ライプニッツは接線を、曲線上の無限に近い二点を通る直線として定義した。より具体的に解析幾何学において、与えられた直線が曲線 の (あるいは曲線上の点 )における接線であるとは、その直線が曲線上の点 を通り、傾きが の微分係数 に等しいときに言う。同様の定義は空間曲線やより高次のユークリッド空間内の曲線に対しても適用できる。 曲線と接線が相接する点は接点 (point of tangency) と言い、曲線との接点において接線は曲線と「同じ方向へ」進む。その意味において接線は、接点における曲線の最適直線近似である。 同様に、曲面の接平面は、接点においてその曲線に「触れるだけ」の平面である。このような意味での「接する」という概念は微分幾何学において最も基礎となる概念であり、接空間として大いに一般化される。.

新しい!!: ルジャンドル変換と接線 · 続きを見る »

東京大学出版会

一般財団法人東京大学出版会(とうきょうだいがくしゅっぱんかい、英称:University of Tokyo Press)は、東京大学の出版部に当たる法人。東京大学総長を会長とし、東京大学の活動に対応した書籍の出版を主に行う。.

新しい!!: ルジャンドル変換と東京大学出版会 · 続きを見る »

温度

温度(おんど、temperature)とは、温冷の度合いを表す指標である。二つの物体の温度の高低は熱的な接触により熱が移動する方向によって定義される。すなわち温度とは熱が自然に移動していく方向を示す指標であるといえる。標準的には、接触により熱が流出する側の温度が高く、熱が流入する側の温度が低いように定められる。接触させても熱の移動が起こらない場合は二つの物体の温度が等しい。 統計力学によれば、温度とは物質を構成する分子がもつエネルギーの統計値である。熱力学温度の零点(0ケルビン)は絶対零度と呼ばれ、分子の運動が静止する状態に相当する。ただし絶対零度は極限的な状態であり、有限の操作で物質が絶対零度となることはない。また、量子的な不確定性からも分子運動が止まることはない。 温度はそれを構成する粒子の運動であるから、化学反応に直結し、それを元にするあらゆる現象における強い影響力を持つ。生物にはそれぞれ至適温度があり、ごく狭い範囲の温度の元でしか生存できない。なお、日常では単に温度といった場合、往々にして気温のことを指す場合がある。.

新しい!!: ルジャンドル変換と温度 · 続きを見る »

滑らかな関数

数学において、関数の滑らかさ(なめらかさ、smoothness)は、その関数に対して微分可能性を考えることで測られる。より高い階数の導関数を持つ関数ほど滑らかさの度合いが強いと考えられる。.

新しい!!: ルジャンドル変換と滑らかな関数 · 続きを見る »

最大と最小

数学の様々な分野で順序が定まった対象に対し、最大のものや最小のものが考察されている。最大のものを表す標準的な記号として max、最小のものを表すものとして min が用いられる。この記事では最大・最小に関係した様々な話題を紹介する。.

新しい!!: ルジャンドル変換と最大と最小 · 続きを見る »

最小作用の原理

最小作用の原理(さいしょうさようのげんり、principle of least action)は、物理学における基礎原理の一つ。特に解析力学の形成において、その基礎付けを与えた力学の原理を指す。最小作用の原理に従って、物体の運動(時間発展)は、作用積分と呼ばれる量を最小にするような軌道に沿って実現される。 物理学における最大の指導原理の一つであり、電磁気学におけるマクスウェルの方程式や相対性理論におけるアインシュタイン方程式ですら、対応するラグランジアンとこの法則を用いて導出される。また、量子力学においても、この法則そのものは、ファインマンの経路積分の考え方によって理解できる。物体は運動において様々な運動経路(軌道)をとる事が可能であるが、作用積分が極値(鞍点値)をとる(すなわち最小作用の原理を満たす)経路が最も量子力学的な確率密度が高くなる事が知られている。.

新しい!!: ルジャンドル変換と最小作用の原理 · 続きを見る »

方程式

14''x'' + 15.

新しい!!: ルジャンドル変換と方程式 · 続きを見る »

数学者

数学者(すうがくしゃ、mathematician)とは、数学に属する分野の事柄を第一に、調査および研究する者を指していう呼称である。.

新しい!!: ルジャンドル変換と数学者 · 続きを見る »

曲線

数学における曲線(きょくせん、curve, curved line)は、一般にまっすぐとは限らない幾何学的対象としての「線」を言う。 つまり、曲線とは曲率が零とは限らないという意味での直線の一般化である。 数学の様々な分野において、その研究領域に応じたそれぞれやや異なる意味で「曲線」の語が用いられる(から、精確な意味は文脈に即して捉えるべきである)が、それらの意味の多くは以下に挙げる定義の特別な実例になっているはずである。すなわち、曲線とは局所的に直線と同相であるような位相空間を言う。それは日常語で言えば、曲線は点の集合であって、それらの点が十分近くであれば直線のように見えるが、変形があってもよいというような意味である。数学の各分野で扱われる。 最初に触れる曲線の簡単な例というのはほとんどの場合「平面曲線」(例えば平らな紙の上に描いた曲がった線)であろうが、螺旋のように三次元的なものもある。幾何学的な必要性や、例えば古典力学からの要請で任意次元の空間に埋め込まれた曲線の概念も必要とされる。一般相対論において世界線とは時空内の曲線である。; 注: 一般用語として、「曲線」が(成長曲線やフィリップス曲線の例に見るように)函数のグラフ、あるいはより多様なの意味で用いられることがあるが、本項で言う意味とは(近い関連はあるにせよ)異なるものと理解すべきである。.

新しい!!: ルジャンドル変換と曲線 · 続きを見る »

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »