ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
インストール
ブラウザよりも高速アクセス!
 

ラグランジュ力学

索引 ラグランジュ力学

ラグランジュ力学(英語:Lagrangian mechanics)は、一般化座標とその微分を基本変数として記述された古典力学である。フランスの物理学者ジョゼフ=ルイ・ラグランジュが創始した。後のハミルトン力学と同様にニュートン力学を再定式化した解析力学の一形式である。.

56 関係: 力 (物理学)力学系培風館古典力学媒介変数対称性不変量 (物理学)一般化座標系一般相対性理論位相同型微分保存系マクスウェルの方程式ネーターの定理ハミルトン力学ポテンシャルルジャンドル変換レフ・ランダウローレンツ力ニュートン力学ニュートンの運動方程式アインシュタイン方程式エネルギーエフゲニー・リフシッツオイラー=ラグランジュ方程式ジョゼフ=ルイ・ラグランジュスカラースカラー曲率サイエンス社円周動力学固有時理論物理学教程経路積分物理量特殊相対性理論直交座標系相対性理論運動エネルギー運動量解析力学計量量の次元量子力学英語電子光子相互作用電磁ポテンシャル電磁テンソル電磁気学電荷・電流密度...東京図書出版江沢洋振り子最小作用の原理時空4元ベクトル インデックスを展開 (6 もっと) »

力 (物理学)

物理学における力(ちから、force)とは、物体の状態を変化させる原因となる作用であり、その作用の大きさを表す物理量である。特に質点の動力学においては、質点の運動状態を変化させる状態量のことをいう。広がりを持つ物体の場合は、運動状態とともにその形状を変化させる。 本項ではまず、古代の自然哲学における力の扱いから始め近世に確立された「ニュートン力学」や、古典物理学における力学、すなわち古典力学の発展といった歴史について述べる。 次に歴史から離れ、現在の一般的視点から古典力学における力について説明し、その後に古典力学と対置される量子力学について少し触れる。 最後に、力の概念について時折なされてきた、「形而上的である」といったような批判などについて、その重要さもあり、項を改めて扱う。.

新しい!!: ラグランジュ力学と力 (物理学) · 続きを見る »

力学系

力学系(りきがくけい、英語:dynamical system)とは、一定の規則に従って時間の経過とともに状態が変化するシステム(系)、あるいはそのシステムを記述するための数学的なモデルのことである。一般には状態の変化に影響を与える数個の要素を変数として取り出し、要素間の相互作用を微分方程式または差分方程式として記述することによってモデル化される。 力学系では、システムの状態を実数の集合によって定義している。各々の状態の違いは、その状態を代表する変数の差のみによって表現される。システムの状態の変化は関数によって与えられ、現在の状態から将来の状態を一意に決定することができる。この関数は、状態の発展規則と呼ばれる。 力学系の例としては、振り子の振動や自然界に存在する生物の個体数の変動、惑星の軌道などが挙げられるが、この世界の現象すべてを力学系と見なすこともできる。システムの振る舞いは、対象とする現象や記述のレベルによって多種多様である。;力学系の具体例.

新しい!!: ラグランジュ力学と力学系 · 続きを見る »

培風館

株式会社培風館(ばいふうかん)は、理学、工学、心理学などの大学向け教科書を中心とした出版社である。 創業者は山本慶治(1881-1963)。山本は兵庫県の豪農の家に生まれ、1908年東京高等師範学校英語科卒、1910年同教育研究科修了、奈良女子高等師範学校講師。岡本米蔵の紐育土地会社に勤務、その出版部門常務となり、1938年培風館として独立。当初は東京高等師範学校の教科書を刊行していた。1962年その長男の山本俊一(1910-2008、東大工学部卒)が社長となり、67年次男の山本健二(1912-93)が継ぐ。健二の死後その子の山本格が社長となる。.

新しい!!: ラグランジュ力学と培風館 · 続きを見る »

古典力学

古典力学(こてんりきがく、英語:classical mechanics)は、量子力学が出現する以前のニュートン力学や相対論的力学。物理学における力学に関する研究、つまり適当な境界の下に幾何学的表現された物質やその集合体の運動を支配し、数学的に記述する物理法則群に関する研究のうち、量子論以降の量子に関するそれを「量子力学」とするのに対し、レトロニム的に、量子論以前のもの(現代でもさかんに研究されている分野だが)を指してそう呼ぶ。 古典力学は、マクロな物質の運動つまり、弾道計算から部分的には機械動作、天体力学、例えば宇宙船、衛星の運動、銀河に関する研究に使われている。そして、それらの領域に対して、とても精度の高い結果をもたらす、最も古く最も広範な科学、工学における領域のうちの一つである。古典力学以外の領域としては気体、液体、固体などを扱う多くの分野が存在している。加えて、古典力学は光速に近い場合には特殊相対性理論を用いることによってより一般な形式を与えることとなる。同様に、一般相対性理論は、より深いレベルで重力を扱うこととなり、量子力学では、分子や原子における、粒子と波動の二重性について扱うこととなる。.

新しい!!: ラグランジュ力学と古典力学 · 続きを見る »

媒介変数

数学において媒介変数(ばいかいへんすう、パラメータ、パラメタ、parameter)とは、主たる変数(自変数)あるいは関数に対して補助的に用いられる変数のことである。なおこの意味でのパラメータは助変数(じょへんすう)とも呼び、また古くは径数(けいすう)とも訳された(後者はリー群の一径数部分群(1-パラメータ部分群)などに残る)。母数と呼ぶこともある。 媒介変数の役割にはいくつかあるがその主なものとして、主たる変数たちの間に陰に存在する関係を記述すること、あるいはいくつもの対象をひとまとまりのものとして扱うことなどがある。前者では関数の媒介変数表示とか陰関数などとよばれるもの、後者では集合族とか数列などが一つの例である。後者の意味を持つ媒介変数はしばしば文字の肩や斜め下に本文より少し小さな文字 (script style) で書かれ、添字 (index) と呼ばれる。.

新しい!!: ラグランジュ力学と媒介変数 · 続きを見る »

対称性

対称性(たいしょうせい、ラテン語・ギリシャ語: συμμετρία symmetria, 独:Symmetrie, 英:symmetry)とは、ある変換に関して不変である性質である。 英語を音訳したシンメトリーと呼ぶこともあるが、2つのmは同時に発音されるため、英語の発音は「シメトリー」に近い。.

新しい!!: ラグランジュ力学と対称性 · 続きを見る »

不変量 (物理学)

論物理学において、不変量 (invariant) はある変換の下で変化しない系の性質である。.

新しい!!: ラグランジュ力学と不変量 (物理学) · 続きを見る »

一般化座標系

一般化座標系(いっぱんかざひょうけい、)は、解析力学において、特定の条件に順ずる物体の運動について、その位置を表すのになるべく少ない変数を用いたり、または簡単で直感的に扱うことができるように、角度や既知の任意の曲線上の距離で表される変数を用いて表される座標系である。デカルト座標系に対して用いられ、これを包括する。 一般化座標は、一般に q_n(n.

新しい!!: ラグランジュ力学と一般化座標系 · 続きを見る »

一般相対性理論

一般相対性理論(いっぱんそうたいせいりろん、allgemeine Relativitätstheorie, general theory of relativity)は、アルベルト・アインシュタインが1905年の特殊相対性理論に続いて1915年から1916年にかけて発表した物理学の理論である。一般相対論(いっぱんそうたいろん、general relativity)とも。.

新しい!!: ラグランジュ力学と一般相対性理論 · 続きを見る »

位相同型

位相同型 (いそうどうけい、homeomorphic)、あるいは同相(どうそう)とは、2つの位相空間が位相空間として等しいことを表す概念である。 例えば、球の表面と湯飲みの表面とはある「連続」な双方向の移し方で互いに移し合うことができるので同相であり、また穴が1つ開いたドーナツの表面 (トーラス) と持ち手がひとつあるマグカップの表面も同じく同相である。よって球の表面と湯のみの表面は位相幾何学的に全く同一の性質を持ち、ドーナツの表面とマグカップの表面も同一の性質を持つ。しかし、球面とトーラスとはこのような写し方が存在しないので同相とはならない。(直観的には、連続的な変形によって穴の個数が変化することはないということである。) ここで連続な写し方とは、直観的には近いところを近いところに写すような写し方を意味する。.

新しい!!: ラグランジュ力学と位相同型 · 続きを見る »

微分

数学におけるの微分(びぶん)、微分係数、微分商または導函数(どうかんすう、derivative)は、別の量(独立変数)に依存して決まるある量(函数の値あるいは従属変数)の変化の感度を測るものである。微分は微分積分学の基本的な道具である。例えば、動く物体の位置の時間に関する導函数はその物体の速度であり、これは時間が進んだときその物体の位置がどれほど早く変わるかを測る。 一変数函数の適当に選んだ入力値における微分係数は、その点における函数のグラフの接線の傾きである。これは導函数がその入力値の近くでその函数の最適線型近似を記述するものであることを意味する。そのような理由で、微分係数はしばしば「瞬間の変化率」として記述される。瞬間の変化率は独立変数に依存する従属変数である。 微分はにも拡張できる。この一般化において、導函数はそのグラフが(適当な変換の後)もとの函数のグラフを最適線型近似する線型変換と解釈しなおされる。ヤコビ行列はこの線型変換を独立および従属変数を選ぶことで与えられる基底に関して表現する行列であり、独立変数に関する偏微分を用いて計算することができる。多変数実数値函数に対して、ヤコビ行列は勾配に簡約される。 導函数を求める過程を微分あるいは微分法、微分演算 (differentiation) と言い、その逆の過程(原始函数を求めること)をという。微分積分学の基本定理は反微分が積分と同じであることを主張する。一変数の微分積分学において微分と積分は基本的な操作の二本柱である。.

新しい!!: ラグランジュ力学と微分 · 続きを見る »

保存系

力学系が保存系であるとは、保存量(または、第一積分)が存在することを意味している。.

新しい!!: ラグランジュ力学と保存系 · 続きを見る »

マクスウェルの方程式

マクスウェルの方程式(マクスウェルのほうていしき、Maxwell's equations)は、電磁場のふるまいを記述する古典電磁気学の基礎方程式である。マイケル・ファラデーが幾何学的考察から見出した電磁力に関する法則が1864年にジェームズ・クラーク・マクスウェルによって数学的形式として整理された。マクスウェル-ヘルツの電磁方程式、電磁方程式などとも呼ばれ、マクスウェルはマックスウェルとも表記される。 真空中の電磁気学に限れば、マクスウェルの方程式の一般解は、ジェフィメンコ方程式として与えられる。 なお、電磁気学の単位系は、国際単位系に発展したMKSA単位系のほか、ガウス単位系などがあるが、以下では原則として、国際単位系を用いることとする。.

新しい!!: ラグランジュ力学とマクスウェルの方程式 · 続きを見る »

ネーターの定理

物理学において、ネーターの定理(ネーターのていり、Noether's theorem)は、系に連続的な対称性がある場合はそれに対応する保存則が存在する、と述べる定理である。 ドイツの数学者エミー・ネーターによって1915年に証明され、1918年に公表された。.

新しい!!: ラグランジュ力学とネーターの定理 · 続きを見る »

ハミルトン力学

ハミルトン力学(ハミルトンりきがく、英語:Hamiltonian mechanics)は、一般化座標と一般化運動量を基本変数として記述された古典力学である。イギリスの物理学者ウィリアム・ローワン・ハミルトンが創始した。ラグランジュ力学と同様にニュートン力学を再公式化した解析力学の一形式。.

新しい!!: ラグランジュ力学とハミルトン力学 · 続きを見る »

ポテンシャル

ポテンシャル(potential)は、潜在力、潜在性を意味する物理用語。 最初にポテンシャル(スカラーポテンシャル)の考え方を導入したのは、ジョゼフ=ルイ・ラグランジュである(1773年)。ラグランジュの段階ではポテンシャルとは言われておらず、これをポテンシャルと呼んだのは、ジョージ・グリーンである(1828年)。カール・フリードリヒ・ガウス、ウィリアム・トムソン、ペーター・グスタフ・ディリクレによってポテンシャル論における三つの基本問題として、ディリクレ問題、ノイマン問題、斜交微分の問題が注目されるようになった。 ポテンシャルエネルギー(位置エネルギー)のことをポテンシャルと呼ぶこともある。.

新しい!!: ラグランジュ力学とポテンシャル · 続きを見る »

ルジャンドル変換

ルジャンドル変換(ルジャンドルへんかん、Legendre transformation)とは、凸解析において、関数の変数を変えるために用いられる変換である。名前はフランスの数学者、アドリアン=マリ・ルジャンドルに因む。ルジャンドル変換は点と線の双対性、つまり下に凸な関数 は の点の集合によって表現できるが、それらの傾きと切片の値で指定される接線の集合によっても等しく充分に表現できることに基いている。 ルジャンドルは解析力学におけるラグランジアンをハミルトニアンに変換する際にルジャンドル変換を用いた。他にも、熱力学における熱力学関数間の変換など、物理学において広く応用されている。 ルジャンドル変換の一般化としてルジャンドル=フェンシェル変換がある(ルジャンドル=フェンシェル変換については凸共役性を参照)。.

新しい!!: ラグランジュ力学とルジャンドル変換 · 続きを見る »

レフ・ランダウ

レフ・ダヴィドヴィッチ・ランダウ(、1908年1月22日 - 1968年4月1日)はロシアの理論物理学者。絶対零度近くでのヘリウムの理論的研究によってノーベル物理学賞を授与された。エフゲニー・リフシッツとの共著である『理論物理学教程』は、多くの言語に訳され、世界的にも標準的な教科書としてよく知られている。.

新しい!!: ラグランジュ力学とレフ・ランダウ · 続きを見る »

ローレンツ力

ーレンツ力(ローレンツりょく、Lorentz force)は、電磁場中で運動する荷電粒子が受ける力のことである。 名前はヘンドリック・ローレンツに由来する。.

新しい!!: ラグランジュ力学とローレンツ力 · 続きを見る »

ニュートン力学

ニュートン力学(ニュートンりきがく、)は、アイザック・ニュートンが、運動の法則を基礎として構築した、力学の体系のことである『改訂版 物理学辞典』培風館。。 「ニュートン力学」という表現は、アインシュタインの相対性理論、あるいは量子力学などと対比して用いられる。.

新しい!!: ラグランジュ力学とニュートン力学 · 続きを見る »

ニュートンの運動方程式

ニュートンの運動方程式(ニュートンのうんどうほうていしき、英語:Newtonian Equation of motion)は、非相対論的古典力学における一質点の運動を記述する運動方程式のひとつであり、以下のような形の2階微分方程式である。 ここで、mは質点の質量、\boldsymbol は質点の位置ベクトル、\boldsymbol は質点の加速度、\boldsymbol は質点にかかる力、t は時間である。\boldsymbol, \boldsymbolはベクトル量、mはスカラー量。.

新しい!!: ラグランジュ力学とニュートンの運動方程式 · 続きを見る »

アインシュタイン方程式

一般相対性理論におけるアインシュタイン方程式(アインシュタインほうていしき、)アインシュタインの重力場方程式(じゅうりょくばのほうていしき、Einstein's field equations;EFE)とも呼ばれる。は、万有引力・重力場を記述する場の方程式である。アルベルト・アインシュタインによって導入された。 アイザック・ニュートンが導いた万有引力の法則を、強い重力場に対して適用できるように拡張した方程式であり、中性子星やブラックホールなどの高密度・大質量天体や、宇宙全体の幾何学などを扱える。.

新しい!!: ラグランジュ力学とアインシュタイン方程式 · 続きを見る »

エネルギー

ネルギー(、)とは、.

新しい!!: ラグランジュ力学とエネルギー · 続きを見る »

エフゲニー・リフシッツ

エフゲニー・ミハイロヴィッチ・リフシッツ(ロシア語:Евгений Михайлович Лифшиц、ラテン文字転写:Evgeny Mikhailovich Lifshitz、1915年2月21日 - 1985年10月29日)は宇宙物理学を専門とする、ソビエト連邦の理論物理学者。 ランダウ、ピタエフスキーとの共著による一連の教科書「理論物理学教程」は、理論物理学を志す学生への手引きとして、あるいは超えるべき壁として今日でも広く知られ、読まれている。 Category:ロシアの物理学者 Category:ソビエト連邦の物理学者 Category:ソビエト連邦科学アカデミー正会員 Category:王立協会外国人会員 Category:モスクワ物理工科大学の教員 Category:労働赤旗勲章受章者 Category:人民友好勲章受章者 Category:レーニン賞受賞者 Category:スターリン賞受賞者 Category:ハリコフ県出身の人物 Category:ハルキウ出身の人物 Category:1915年生 Category:1985年没.

新しい!!: ラグランジュ力学とエフゲニー・リフシッツ · 続きを見る »

オイラー=ラグランジュ方程式

イラー=ラグランジュ方程式(オイラー=ラグランジュほうていしき、Euler–Lagrange equation)は汎関数の停留値を与える関数を求める微分方程式である。 オイラーとラグランジュらの仕事により1750年代に発展した。 単に、オイラー方程式、ラグランジュ方程式とも呼ばれる。 ニュートン力学における運動方程式をより数学的に洗練された方法で定式化しなおしたもので、物理学上重要な微分方程式である。 オイラー=ラグランジュ方程式を基礎方程式としたニュートン力学の定式化をラグランジュ形式の解析力学と呼ぶ。.

新しい!!: ラグランジュ力学とオイラー=ラグランジュ方程式 · 続きを見る »

ジョゼフ=ルイ・ラグランジュ

ョゼフ=ルイ・ラグランジュ(Joseph-Louis Lagrange, 1736年1月25日 - 1813年4月10日)は、数学者、天文学者である。オイラーと並んで18世紀最大の数学者といわれている。イタリア(当時サルデーニャ王国)のトリノで生まれ、後にプロイセン、フランスで活動した。彼の初期の業績は、微分積分学の物理学、特に力学への応用である。その後さらに力学を一般化して、最小作用の原理に基づく、解析力学(ラグランジュ力学)をつくり出した。ラグランジュの『解析力学』はラプラスの『天体力学』と共に18世紀末の古典的著作となった。.

新しい!!: ラグランジュ力学とジョゼフ=ルイ・ラグランジュ · 続きを見る »

スカラー

ラー、スカラ; scalar.

新しい!!: ラグランジュ力学とスカラー · 続きを見る »

スカラー曲率

リーマン幾何学におけるスカラー曲率(すからーきょくりつ、Scalar curvature)またはリッチスカラー(Ricci scalar)は、リーマン多様体の最も単純な曲率不変量である。リーマン多様体の各点に、その近傍における多様体の内在的な形状から定まる単一の実数を対応させる。 2次元においては、スカラー曲率はリーマン多様体の曲率を完全に特徴付ける。しかし、次元が3以上の場合は、曲率の決定にはさらに情報が必要である。詳しい議論はリーマン多様体の曲率(en) を参照。 スカラー曲率はしばしば S (その他の表記としてSc, R)と表され、計量テンソル g に関するリッチ曲率 Ric のトレース として定義される。リッチテンソルは (0,2)-型テンソルであり、トレースをとるためには最初の添字を上げて (1,1)-型テンソルとしなければならないから、このトレースは計量の取り方に依存する。局所座標系を用いて と書き表すことができる。ただし である。座標系と計量テンソルが与えられたとき、スカラー曲率は のように表示できる。ここで Γabc は計量のクリストッフェル記号である。 任意のアフィン接続に対して自然に定義されるリーマン曲率テンソルやリッチテンソルとは異なり、スカラー曲率は(その定義がまさに計量と不可分な方法で与えられたことを思えば)完全にリーマン幾何学の領域に特有の概念であることが分かる。.

新しい!!: ラグランジュ力学とスカラー曲率 · 続きを見る »

サイエンス社

株式会社サイエンス社(サイエンスしゃ、英称:SAIENSU-SHA Co.,Ltd.)は、東京都渋谷区千駄ヶ谷にある日本の出版社である。.

新しい!!: ラグランジュ力学とサイエンス社 · 続きを見る »

円周

円周(えんしゅう、circumference)とは、円の周囲もしくは周長のこと。円周と直径の比率を円周率という。.

新しい!!: ラグランジュ力学と円周 · 続きを見る »

動力学

動力学(どうりきがく、dynamics)は、物理学における古典物理学の一つの分野で、物体の動作における力の影響を扱うものである。 もとは力学 の一部から力の要因を考慮するものとしないもの(運動学、kinematics)とに区別され、後に力の要因を考慮する力学から平衡状態を扱う静力学(statics)と非平衡状態をあつかう動力学へ区別された。量子力学においては、動力学は量子電磁力学や量子色力学のように、どのように力が量子化されているか、という形で取り扱われている。.

新しい!!: ラグランジュ力学と動力学 · 続きを見る »

固有時

固有時(こゆうじ)とは、物理現象・物理法則を支配する時間を言う。特殊相対性理論・一般相対性理論により,ある観測者から見て移動する座標系若しくは重力等で歪んだ時空座標系の下でも,(時空点ごとに固有・不変となる)固有時を用いることにより物理法則は普遍形・不変形を示す。 本稿では特殊相対性理論に基づく観点の下で固有時の説明を行う。 ---- 固有時(こゆうじ)とは、注目する物体に伴って移動する座標系で計測した時間のことである。一般に記号はτを用いる。ニュートン力学まで用いられた全宇宙で一意な絶対時間に代わり、注目すべき物体の固有時が物理法則の記述に用いられるようになった。 アインシュタインは一般相対性理論に基づく観点から、「私は全宇宙に時計を置いた」と述べている。.

新しい!!: ラグランジュ力学と固有時 · 続きを見る »

理論物理学教程

『理論物理学教程』(りろんぶつりがくきょうてい、Курс теоретической физики; Course of Theoretical Physics)は、レフ・ランダウ、エフゲニー・リフシッツおよびらによる物理学の教科書。『ランダウ=リフシッツの理論物理学教程』とも呼ばれる。様々な言語に翻訳されており、標準的な教科書として使用されている。日本では個々の巻を指して「ランダウの力学」「ランダウの統計」などと称されることが多い。「ランダウの〜」と呼ばれるものの文章を書くことが不得手であったランダウに代わり実際に『教程』を執筆したのはリフシッツである。リフシッツはランダウが交通事故に遭遇した時点で未完だった10巻のうち3巻をピタエフスキーに協力を仰ぎつつ『教程』を完成させた。『教程』が全巻完結した後も最新の知見を盛り込むなど改訂を続け、個々の巻は初期の版に比べ大幅にページ数が増加している。.

新しい!!: ラグランジュ力学と理論物理学教程 · 続きを見る »

経路積分

経路積分(けいろせきぶん)あるいは径路積分は、リチャード・P・ファインマンが考案した量子力学の理論手法である。ファインマンの経路積分とも呼ばれる。.

新しい!!: ラグランジュ力学と経路積分 · 続きを見る »

物理量

物理量(ぶつりりょう、physical quantity)とは、.

新しい!!: ラグランジュ力学と物理量 · 続きを見る »

特殊相対性理論

特殊相対性理論(とくしゅそうたいせいりろん、Spezielle Relativitätstheorie、Special relativity)とは、慣性運動する観測者が電磁気学的現象および力学的現象をどのように観測するかを記述する、物理学上の理論である。アルベルト・アインシュタインが1905年に発表した論文に端を発する。特殊相対論と呼ばれる事もある。.

新しい!!: ラグランジュ力学と特殊相対性理論 · 続きを見る »

直交座標系

数学における直交座標系(ちょっこうざひょうけい、, )とは、互いに直交している座標軸を指定することによって定まる座標系のことである。平面上の直交座標系ではそれぞれの点に対して一意に定まる二つの実数の組によって点の位置が指定される。同様にして空間上の直交座標系では三つの実数の組によって座標が与えられる。 1637年に発表された『方法序説』において平面上の座標の概念を確立したルネ・デカルトの名を採ってデカルト座標系 (Cartesian coordinate system) とも呼ぶ。.

新しい!!: ラグランジュ力学と直交座標系 · 続きを見る »

相対性理論

一般相対性理論によって記述される、2次元空間と時間の作る曲面。地球の質量によって空間が歪むとして記述して、重力を特殊相対性理論に取り入れる。実際の空間は3次元であることに注意すべし。 相対性理論(そうたいせいりろん、Relativitätstheorie, theory of relativity)または相対論は特殊相対性理論と一般相対性理論の総称である。量子論に対し古典論に分類される物理の分野としては、物理史的には最後の「大物」であった。量子力学と並び、いわゆる現代物理の基本的な理論である。 特殊と一般の、いずれもアルベルト・アインシュタインにより記述された。まず、等速運動する慣性系の間において物理法則は互いに不変であるはずという原理(相対性原理)と光速度不変の原理から導かれたのが、特殊相対性理論である(1905年)。特殊相対性理論は、時間と空間に関する相互間の変換が、相対速度が光速に近づくと、従来のいわゆる「ニュートン時空」的に信じられていたガリレイ変換の結果とは違ったものになること、そういった場合にはローレンツ変換が正しい変換であることを示した(「ミンコフスキー時空」)。 続いて、等価原理により加速度によるいわゆる「見かけの重力」と重力場を「等価」として、慣性系以外にも一般化したのが一般相対性理論である(1915〜1916年)。.

新しい!!: ラグランジュ力学と相対性理論 · 続きを見る »

運動エネルギー

運動エネルギー(うんどうエネルギー、)は、物体の運動に伴うエネルギーである。物体の速度を変化させる際に必要な仕事である。英語の は、「運動」を意味するギリシア語の (kinesis)に由来する。この用語は1850年頃ウィリアム・トムソンによって初めて用いられた。.

新しい!!: ラグランジュ力学と運動エネルギー · 続きを見る »

運動量

運動量(うんどうりょう、)とは、初等的には物体の運動の状態を表す物理量で、質量と速度の積として定義される。この意味の運動量は後述する一般化された運動量と区別して、運動学的運動量(あるいは動的運動量、kinetic momentum, dynamical momentum)と呼ばれる。また、角運動量 という運動量とは異なる量と対比する上で、線型運動量 などと呼ばれることもある。 日常生活において、物体の持つ運動量は、動いている物体の止めにくさとして体感される。つまり、重くて速い物体ほど運動量が大きく、静止させるのに大きな力積が必要になる。 アイザック・ニュートンは運動量の時間的変化と力の関係を運動の第2法則として提示した。 解析力学では、上述の定義から離れ、運動量は一般化座標とオイラー=ラグランジュ方程式を通じて与えられる。この運動量は一般化座標系における一般化速度の対応物として、一般化運動量 と呼ばれる。 特にハミルトン形式の解析力学においては、正準方程式を通じて与えられる正準変数の一方を座標と呼び他方を運動量と呼ぶ。この意味の運動量は、他と区別して、正準運動量 と呼ばれる。また、正準運動量は、正準方程式において座標の対となるという意味で、共役運動量 と呼ばれる。運動量は、ハミルトン形式の力学では、速度よりも基本的な量であり、ハミルトン形式で記述される通常の量子力学においても重要な役割を果たす。 共役運動量と通常の運動学的運動量の違いが際立つ例として、磁場中を運動する電子の運動の例が挙げられる(#解析力学における運動量も参照)。電磁場中を運動する電子に対してはローレンツ力が働くが、このローレンツ力に対応する一般化されたポテンシャルエネルギーには電子の速度の項があるために、共役運動量はラグランジアンのポテンシャル項に依存した形になる。このとき共役運動量と運動学的運動量は一致しない。また、電磁場中の電子の運動を記述する古典的ハミルトニアンでは、共役運動量の部分がすべて共役運動量からベクトルポテンシャルの寄与を引いたものに置き換わる。.

新しい!!: ラグランジュ力学と運動量 · 続きを見る »

解析力学

解析力学(かいせきりきがく、英語:analytical mechanics)とは、ニュートン力学を数学の解析学の手法を用いて記述する、数学的に洗練された形式。解析力学の体系は基本的にはラグランジュ力学とハミルトン力学により構成される。 力のつりあいについてのダランベールの原理から始め、つりあいを微小な変位による仕事の関係式に置き換える仮想仕事の原理によってエネルギーの問題に移した。 幾何光学における変分原理であるフェルマーの原理からの類推で、古典力学において最小作用の原理(モーペルテューイの原理)が発見された。これにより、力学系の問題は、作用積分とよばれる量を最小にするような軌道をもとめる数学の問題になった。 座標を一般化座標に拡張し、ラグランジュ方程式が導き出された。 さらに、ラグランジアンから一般化運動量を定め、座標と運動量のルジャンドル変換によって、ハミルトン力学が導かれた。 ラグランジュ方程式は微分方程式を与えるのに対して、ハミルトンの正準方程式は積分を与える。 さらにこれから、ハミルトン・ヤコビの偏微分方程式が、得られる。 ラグランジュ形式は微分幾何学とも相性がよく、相対性理論の分野では必須である。 ハミルトン形式はその後の量子力学とくに行列力学へと続く。.

新しい!!: ラグランジュ力学と解析力学 · 続きを見る »

計量

計量(けいりょう、measuring, measurement)は、.

新しい!!: ラグランジュ力学と計量 · 続きを見る »

量の次元

量の次元(りょうのじげん、)とは、ある量体系に含まれる量とその量体系の基本量との関係を、基本量と対応する因数の冪乗の積として示す表現である。 ISOやJISなどの規格では量 の次元を で表記することが規定されているが、しばしば角括弧で括って で表記されるISOやJISなどにおいては、角括弧を用いた は単位を表す記号として用いられている。なお、次元は単位と混同が多い概念であるが、単位の選び方に依らない概念である。。 次元は量の間の関係を表す方法であり、量方程式の乗法を保つ。ある量 が二つの量 によって量方程式 で表されているとき、それぞれの量の次元の間の関係は量方程式の形を反映して となる。基本量 と対応する因子を で表したとき、量 の次元は の形で一意に表される。このとき冪指数 は次元指数と呼ばれる。全ての次元指数がゼロとなる量の次元は指数法則により1である。次元1の量は無次元量()とも呼ばれる。.

新しい!!: ラグランジュ力学と量の次元 · 続きを見る »

量子力学

量子力学(りょうしりきがく、quantum mechanics)は、一般相対性理論と同じく現代物理学の根幹を成す理論として知られ、主として分子や原子、あるいはそれを構成する電子など、微視的な物理現象を記述する力学である。 量子力学自身は前述のミクロな系における力学を記述する理論だが、取り扱う系をそうしたミクロな系の集まりとして解析することによって、ニュートン力学に代表される古典論では説明が困難であった巨視的な現象についても記述することができる。たとえば量子統計力学はそのような応用例の一つである。従って、生物や宇宙のようなあらゆる自然現象もその記述の対象となり得る。 代表的な量子力学の理論として、エルヴィン・シュレーディンガーによって創始された、シュレーディンガー方程式を基礎に置く波動力学と、ヴェルナー・ハイゼンベルク、マックス・ボルン、パスクアル・ヨルダンらによって構成された、ハイゼンベルクの運動方程式を基礎に置く行列力学がある。ただしこの二つは数学的に等価である。 基礎科学として重要で、現代の様々な科学や技術に必須な分野である。 たとえば科学分野について、太陽表面の黒点が磁石になっている現象は、量子力学によって初めて解明された。 技術分野について、半導体を利用する電子機器の設計など、微細な領域に関するテクノロジーのほとんどは量子力学を基礎として成り立っている。そのため量子力学の適用範囲の広さと現代生活への影響の大きさは非常に大きなものとなっている。一例として、パソコンや携帯電話、レーザーの発振器などは量子力学の応用で開発されている。工学において、電子工学や超伝導は量子力学を基礎として展開している。.

新しい!!: ラグランジュ力学と量子力学 · 続きを見る »

英語

アメリカ英語とイギリス英語は特徴がある 英語(えいご、)は、イ・ヨーロッパ語族のゲルマン語派に属し、イギリス・イングランド地方を発祥とする言語である。.

新しい!!: ラグランジュ力学と英語 · 続きを見る »

電子光子相互作用

電子光子相互作用(でんしこうしそうごさよう)とは、電子と光(電磁場、光子)との間に働く相互作用である。.

新しい!!: ラグランジュ力学と電子光子相互作用 · 続きを見る »

電磁ポテンシャル

電磁ポテンシャル(でんじポテンシャル)とは、電磁場のポテンシャル概念で、スカラーポテンシャルとベクトルポテンシャルの総称である。 物理学、特に電磁気学とその応用分野で使われる。 以下断りがない限り、古典電磁気学のケースを想定して説明する。.

新しい!!: ラグランジュ力学と電磁ポテンシャル · 続きを見る »

電磁テンソル

電磁テンソルとは、電磁場を相対性理論にもとづいた形式で記述したものである。以後、相対論と言えば、特に断りがなければ特殊相対性理論を指す。.

新しい!!: ラグランジュ力学と電磁テンソル · 続きを見る »

電磁気学

電磁気学(でんじきがく、)は、物理学の分野の1つであり、電気と磁気に関する現象を扱う学問である。工学分野では、電気磁気学と呼ばれることもある。.

新しい!!: ラグランジュ力学と電磁気学 · 続きを見る »

電荷・電流密度

電荷・電流密度(でんか・でんりゅうみつど, )、或いは4元電流密度とは、電荷密度と電流密度を相対論的に記述したものである。 電荷・電流密度は4元ベクトルでありローレンツ変換に従う。 電荷密度 \rho(t,\boldsymbol)、電流密度 \boldsymbol(t,\boldsymbol) によって と書かれる。ここで c は光速度であり、電荷密度の次元を電流密度の次元に換算する定数である。 電荷・電流密度は連続の方程式 を満たす。 電荷・電流密度は電磁場の源(ソース)でありマクスウェルの方程式 を満たす。ここで F は電磁場テンソル、A は電磁ポテンシャルである。 また、μ0は透磁率である。 また、電荷・電流密度は、電磁場からローレンツ力 を受ける。.

新しい!!: ラグランジュ力学と電荷・電流密度 · 続きを見る »

東京図書出版

東京図書出版(とうきょうとしょしゅっぱん)は、株式会社ブレイン内にある出版事業部である。.

新しい!!: ラグランジュ力学と東京図書出版 · 続きを見る »

江沢洋

江沢 洋(えざわ ひろし、1932年6月2日 - )は、日本の物理学者。学習院大学名誉教授。 東京府出身。1960年東京大学大学院理学研究科物理学専攻博士課程修了、「超高エネルギー領域におけるπ中間子と核子との相互作用」で理学博士、東大理学部助手、1963年から1967年まで米国、ドイツに学ぶ。1967年学習院大学助教授、1970年教授、1977年『だれが原子をみたか』でサンケイ児童出版文化賞受賞。1998年定年退任、名誉教授。.

新しい!!: ラグランジュ力学と江沢洋 · 続きを見る »

振り子

振り子(ふりこ、pendulum)とは、空間固定点(支点)から吊るされ、重力の作用により、揺れを繰り返す物体である。支点での摩擦や空気抵抗の無い理想の環境では永久に揺れ続ける。時計や地震計などに用いられる。 振り子についての最初の研究記録はアリストテレス、ギリシャ人の哲学者による。さらに 17世紀、ガリレオにはじまる物理学者らよる観測の結果、等時性が発見され時計に使用されるようになった。 同じように等時性を示す装置として、ばね振り子やねじれ振り子などがある。.

新しい!!: ラグランジュ力学と振り子 · 続きを見る »

最小作用の原理

最小作用の原理(さいしょうさようのげんり、principle of least action)は、物理学における基礎原理の一つ。特に解析力学の形成において、その基礎付けを与えた力学の原理を指す。最小作用の原理に従って、物体の運動(時間発展)は、作用積分と呼ばれる量を最小にするような軌道に沿って実現される。 物理学における最大の指導原理の一つであり、電磁気学におけるマクスウェルの方程式や相対性理論におけるアインシュタイン方程式ですら、対応するラグランジアンとこの法則を用いて導出される。また、量子力学においても、この法則そのものは、ファインマンの経路積分の考え方によって理解できる。物体は運動において様々な運動経路(軌道)をとる事が可能であるが、作用積分が極値(鞍点値)をとる(すなわち最小作用の原理を満たす)経路が最も量子力学的な確率密度が高くなる事が知られている。.

新しい!!: ラグランジュ力学と最小作用の原理 · 続きを見る »

時空

時空(じくう、spacetime)は、時間と空間を合わせて表現する物理学の用語、または、時間と空間を同時に、場合によっては相互に関連したものとして扱う概念である。時空間()とも。.

新しい!!: ラグランジュ力学と時空 · 続きを見る »

4元ベクトル

物理学の、特に相対性理論における4元ベクトル(よんげんべくとる、four–vector )とは、ミンコフスキー空間またはローレンツ多様体上の 4 次元のベクトルである。より具体的には、時間に対応する物理量と空間に対応する 3 次元ベクトルをまとめて 4 次元時空上のベクトルとして表示したものである。 ベクトルということで太字で表されたり、3次元のベクトルと区別するため細字のままのこともある。4元ベクトルの添え字は などギリシャ文字を使用することが多い。 などラテン文字の添え字は、しばしば空間成分のみを表す意図で用いられる。添え字の上付き・下付きによって、後述する共変ベクトルと反変ベクトルを区別する。.

新しい!!: ラグランジュ力学と4元ベクトル · 続きを見る »

ここにリダイレクトされます:

ラグランジュ形式ラグランジュ法ラグランジュ関数ラグランジアンラグランジアン密度ラグランジェ形式ラグランジェ力学

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »