ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
ダウンロード
ブラウザよりも高速アクセス!
 

マイスナー効果

索引 マイスナー効果

マイスナー効果(マイスナーこうか Meissner effect, Meißner Ochsenfeld Effekt)は、超伝導体が持つ性質の1つであり、遮蔽電流(永久電流)の磁場が外部磁場に重なり合って超伝導体内部の正味の磁束密度をゼロにする現象である。マイスナー―オクセンフェルト効果 、あるいは完全反磁性とも呼ばれる。.

28 関係: 効果の一覧完全導体不連続性の分類常伝導低温物理学マクスウェルの方程式ロンドン方程式ヴァルター・マイスナーボース=アインシュタイン凝縮ヘリウムピン止め効果テスラ (単位)ガウスケルビンジョセフソン効果ジェイムズ・デュワースズ磁場磁気浮上物性物理学銅酸化物超伝導体高温超伝導超伝導超流動臨界磁場電磁石電磁誘導温度

効果の一覧

効果の一覧(こうかのいちらん)は、固有名として使われる効果を示す。学問上の効果、社会一般で言われる効果を含む。効果の名称の後ろの注記は分野を示す。但し、特殊効果、視覚効果は除く。.

新しい!!: マイスナー効果と効果の一覧 · 続きを見る »

完全導体

完全導体(かんぜんどうたい、perfect conductor)とは電気抵抗がゼロの物質のこと。同じく電気抵抗がゼロの物質に超伝導体があるが、超伝導体は電気抵抗がゼロのほかに、マイスナー効果、磁束の量子化、ジョセフソン効果、ピン止め効果などのすべての現象を起こす。電気抵抗ゼロのみの物質が完全導体である。現在のところ、完全導体であり、超伝導体ではない物質は存在しない。超伝導として認められるには、完全導体とマイスナー効果を示す必要がある。電気抵抗がゼロであり、マイスナー効果がでないもの、あるいはただ単に電気抵抗がゼロのものを完全導体と呼ぶ。.

新しい!!: マイスナー効果と完全導体 · 続きを見る »

不連続性の分類

連続関数は数学およびその応用において非常に重要である。しかし、関数が全て連続というわけではない。ある関数がその定義域内のある点で連続でないとき、その関数は不連続性 (discontinuity) を有する。関数の不連続点全体の成す集合は離散集合の場合もあるし、稠密集合の場合もある。場合によっては定義域全体と同じとなるかもしれない。 本項目では、最も単純な実一変数で実数を値にとる函数の場合における不連続性の分類を述べる。.

新しい!!: マイスナー効果と不連続性の分類 · 続きを見る »

常伝導

常伝導(じょうでんどう)とは、導体が超伝導になっていない状態(常伝導状態)、または、超伝導現象を起こさない導体(常伝導体)のことである。超伝導物質の中の不純物や超伝導になりきれていない部分は常伝導相と呼ばれる。電気抵抗ゼロの物質である超伝導体が発見されてから出来た言葉であり、超伝導とは対の意味で使われる。.

新しい!!: マイスナー効果と常伝導 · 続きを見る »

低温物理学

低温物理学(ていおんぶつりがく)は、絶対零度に非常に近い超低温領域における物理学の1分野である。この様な超低温では、熱的な擾乱が小さくなるために、凝縮系内の微小な相互作用や巨視的な量子効果による特異な現象が現れてくる。.

新しい!!: マイスナー効果と低温物理学 · 続きを見る »

マクスウェルの方程式

マクスウェルの方程式(マクスウェルのほうていしき、Maxwell's equations)は、電磁場のふるまいを記述する古典電磁気学の基礎方程式である。マイケル・ファラデーが幾何学的考察から見出した電磁力に関する法則が1864年にジェームズ・クラーク・マクスウェルによって数学的形式として整理された。マクスウェル-ヘルツの電磁方程式、電磁方程式などとも呼ばれ、マクスウェルはマックスウェルとも表記される。 真空中の電磁気学に限れば、マクスウェルの方程式の一般解は、ジェフィメンコ方程式として与えられる。 なお、電磁気学の単位系は、国際単位系に発展したMKSA単位系のほか、ガウス単位系などがあるが、以下では原則として、国際単位系を用いることとする。.

新しい!!: マイスナー効果とマクスウェルの方程式 · 続きを見る »

ロンドン方程式

ンドン方程式(ロンドンほうていしき、London equation)とは、超伝導の特徴の1つであるマイスナー効果に対して現象論的な解釈を与える方程式のことである。 ロンドン兄弟(フリッツ・ロンドンとハインツ・ロンドン)によって導きだされたのでロンドン方程式という。この方程式で使うλ(ラムダ)をロンドンの侵入長(しんにゅうちょう、London penetration depth)という。.

新しい!!: マイスナー効果とロンドン方程式 · 続きを見る »

ヴァルター・マイスナー

ヴァルター・マイスナー フリッツ・ヴァルター・マイスナー(Fritz Walther Meißner (Meissner), 1882年12月16日 - 1974年11月16日)は、ドイツの物理学者。超伝導の特性の1つであるマイスナー効果を発見した。.

新しい!!: マイスナー効果とヴァルター・マイスナー · 続きを見る »

ボース=アインシュタイン凝縮

ボース=アインシュタイン凝縮(ボース=アインシュタインぎょうしゅく、Bose-Einstein condensation英語では、凝縮する過程を condensation、凝縮した状態を condensate と言い分ける場合もある。)、または略してBECとは、ある転移温度以下で巨視的な数のボース粒子が最低エネルギー状態に落ち込む相転移現象 上田 (1998) E.A. Cornel ''et al.'' (1999) F. Dalfavo ''et al.'' (1999) W. Kettelrle ''et al.'' (1999)。量子力学的なボース粒子の満たす統計性であるボース=アインシュタイン統計の性質から導かれる。BECの存在はアルベルト・アインシュタインの1925年の論文の中で予言されたA. Pais (2005), chapter.23 。粒子間の相互作用による他の相転移現象とは異なり、純粋に量子統計性から引き起こされる相転移であり、アインシュタインは「引力なしの凝縮」と呼んだ。粒子間相互作用が無視できる理想ボース気体に近い中性原子気体のBECは、アインシュタインの予言から70年経った1995年に実現された。1995年にコロラド大学の研究グループはルビジウム87(87Rb)、マサチューセッツ工科大学(MIT)の研究グループはナトリウム23(23Na)の希薄な中性アルカリ原子気体でのBECを実現させた。中性アルカリ原子気体でBECが起こる数マイクロKから数百ナノKという極低温状態の実現には、レーザー冷却などの冷却技術やなどの捕獲技術の確立が不可欠であった (free access) (free access)。2001年のノーベル物理学賞は、これらのBEC実現の実験的成果に対し、授与された。.

新しい!!: マイスナー効果とボース=アインシュタイン凝縮 · 続きを見る »

ヘリウム

ヘリウム (新ラテン語: helium, helium )は、原子番号 2、原子量 4.00260、元素記号 He の元素である。 無色、無臭、無味、無毒(酸欠を除く)で最も軽い希ガス元素である。すべての元素の中で最も沸点が低く、加圧下でしか固体にならない。ヘリウムは不活性の単原子ガスとして存在する。また、存在量は水素に次いで宇宙で2番目に多い。ヘリウムは地球の大気の 0.0005 % を占め、鉱物やミネラルウォーターの中にも溶け込んでいる。天然ガスと共に豊富に産出し、気球や小型飛行船のとして用いられたり、液体ヘリウムを超伝導用の低温素材としたり、大深度へ潜る際の呼吸ガスとして用いられている。.

新しい!!: マイスナー効果とヘリウム · 続きを見る »

ピン止め効果

ピン止め効果(ピンどめこうか、flux pinning、磁束ピン止めともいう)とは、磁束が第二種超伝導体の内部にあるひずみや不純物などの常伝導部分に捕らえられ、ピンで止めたように動かなくなる現象。第二種超伝導体において、外部磁場が臨界磁場Hc1とHc2の間にあるときに起こる。.

新しい!!: マイスナー効果とピン止め効果 · 続きを見る »

テスラ (単位)

テスラ(tesla、記号: T)は、磁束密度の単位である。 その名称はニコラ・テスラにちなむ。1960年の国際単位系 (SI) 導入の際、それまでのCGS単位系に基づくガウスをSIに基づくものに置き換えるために定められた。.

新しい!!: マイスナー効果とテスラ (単位) · 続きを見る »

ガウス

ウス(gauss, 記号:G)は、CGS電磁単位系・ガウス単位系における磁束密度の単位である。その名前は、ドイツの数学者であるカール・フリードリヒ・ガウスにちなむ。 1ガウスは、磁束の方向に垂直な面の1平方センチメートル(cm2)につき1マクスウェル(Mx)の磁束密度と定義されている。すなわち、ガウスはマクスウェル毎平方センチメートル(Mx/cm2)と表すことができる。 ガウスの定義において、平方センチメートルを平方メートル(m2, 1m2.

新しい!!: マイスナー効果とガウス · 続きを見る »

ケルビン

ルビン(kelvin, 記号: K)は、熱力学温度(絶対温度)の単位である。国際単位系 (SI) において基本単位の一つとして位置づけられている。 ケルビンの名は、イギリスの物理学者で、絶対温度目盛りの必要性を説いたケルビン卿ウィリアム・トムソンにちなんで付けられた。なお、ケルビン卿の通称は彼が研究生活を送ったグラスゴーにあるから取られている。.

新しい!!: マイスナー効果とケルビン · 続きを見る »

ジョセフソン効果

ョセフソン効果(ジョセフソンこうか、)は、弱く結合した2つの超伝導体の間に、超伝導電子対のトンネル効果によって超伝導電流が流れる現象である。1962年に、当時ケンブリッジ大学の大学院生だったブライアン・ジョセフソンによって理論的に導かれ、ベル研究所のアンダーソンとローウェルによって実験的に検証された。1973年、ブライアン・ジョセフソンは江崎玲於奈らと共にジョゼフソン効果の研究によりノーベル物理学賞を受賞した。波動関数の位相というミクロな量をマクロに観測できるという点で、超伝導の特徴を最も端的に示す現象と言うことができる。超伝導量子干渉計(SQUID)のようなジョセフソン効果による量子力学回路の重要な実用例もある。 弱結合の種類としては、トンネル接合、サブミクロンサイズのブリッジ、ポイントコンタクト等がある。また、トンネル障壁としては厚さ 程度の絶縁体、厚さ 程度の常伝導金属あるいは半導体等が使われる。弱結合を介して流れる超伝導電流をジョセフソン電流、ジョセフソン効果を示すトンネル接合をジョセフソン接合と呼ぶ。電子デバイスとして扱われる場合はジョセフソン素子と呼ばれる。.

新しい!!: マイスナー効果とジョセフソン効果 · 続きを見る »

ジェイムズ・デュワー

ー・ジェイムズ・デュワー(Sir James Dewar, 1842年9月20日 - 1923年3月27日)は、イギリスの化学者・物理学者。液体酸素が磁性を持つことの発見、水素の液化と固化の成功など低温物理学の分野で先駆的な研究を行った。また魔法瓶(デュワー瓶)や、コルダイト火薬(無煙火薬の一種)を発明した。.

新しい!!: マイスナー効果とジェイムズ・デュワー · 続きを見る »

スズ

(錫、Tin、Zinn)とは、典型元素の中の炭素族元素に分類される金属で、原子番号50の元素である。元素記号は Sn。.

新しい!!: マイスナー効果とスズ · 続きを見る »

磁場

磁場(じば、Magnetic field)は、電気的現象・磁気的現象を記述するための物理的概念である。工学分野では、磁界(じかい)ということもある。 単に磁場と言った場合は磁束密度Bもしくは、「磁場の強さ」Hのどちらかを指すものとして用いられるが、どちらを指しているのかは文脈により、また、どちらの解釈としても問題ない場合も多い。後述のとおりBとHは一定の関係にあるが、BとHの単位は国際単位系(SI)でそれぞれWb/m², A/m であり、次元も異なる独立した二つの物理量である。Hの単位はN/Wbで表すこともある。なお、CGS単位系における、磁場(の強さ)Hの単位は、Oeである。 この項では一般的な磁場の性質、及びHを扱うこととする。 磁場は、空間の各点で向きと大きさを持つ物理量(ベクトル場)であり、電場の時間的変化または電流によって形成される。磁場の大きさは、+1のN極が受ける力の大きさで表される。磁場を図示する場合、N極からS極向きに磁力線の矢印を描く。 小学校などの理科の授業では、砂鉄が磁石の周りを囲むように引きつけられる現象をもって、磁場の存在を教える。このことから、磁場の影響を受けるのは鉄だけであると思われがちだが、強力な磁場の中では、様々な物質が影響を受ける。最近では、磁場や電場(電磁場、電磁波)が生物に与える影響について関心が寄せられている。.

新しい!!: マイスナー効果と磁場 · 続きを見る »

磁気浮上

磁気浮上(じきふじょう、magnetic suspension)は、磁力のみによって物体を空中浮揚させる方法を指す。マグレブとも。重力に抗する力として電磁気力が用いられる。 いくつかの場合には、浮上のための力としては磁気浮上を用いるものの安定化のために微小な力を加える支持機構が用いられる。これは擬似磁気浮上(pseudo-levitation)と呼ばれる。 磁気浮上式鉄道、磁気軸受、商品展示などに用いられる。.

新しい!!: マイスナー効果と磁気浮上 · 続きを見る »

物性物理学

物性物理学(ぶっせいぶつりがく)は、物質のさまざまな巨視的性質を微視的な観点から研究する物理学の分野。量子力学や統計力学を理論的基盤とし、その理論部門を物性論(ぶっせいろん)と呼ぶことも多い。これらは日本の物理学界独特の名称であるが、しばしば凝縮系物理学に比定される。狭義には固体物理学を指し、広義には固体物理学(結晶・アモルファス・合金)およびソフトマター物理学・表面物理学・物理化学、プラズマ・流体力学などの周辺分野を含む。.

新しい!!: マイスナー効果と物性物理学 · 続きを見る »

銅酸化物超伝導体

銅酸化物超伝導体(どうさんかぶつちょうでんどうたい)は、酸化銅を含み超伝導現象を示す化合物。.

新しい!!: マイスナー効果と銅酸化物超伝導体 · 続きを見る »

高温超伝導

温超伝導(こうおんちょうでんどう、high-temperature superconductivity)とは、高い転移温度 で起こる超伝導である。.

新しい!!: マイスナー効果と高温超伝導 · 続きを見る »

超伝導

超伝導(ちょうでんどう、superconductivity)とは、特定の金属や化合物などの物質を非常に低い温度へ冷却したときに、電気抵抗が急激にゼロになる現象。「超電導」と表記されることもある。1911年、オランダの物理学者ヘイケ・カメルリング・オンネスにより発見された。この現象と同時に、マイスナー効果により外部からの磁力線が遮断されることから、電気抵抗の測定によらなくとも、超伝導状態が判別できる。この現象が現れるときの温度は超伝導転移温度と呼ばれ、この温度を室温程度に上昇させること(室温超伝導)は、現代物理学の重要な研究目標の一つ。.

新しい!!: マイスナー効果と超伝導 · 続きを見る »

超流動

超流動(英語:superfluidity)とは、極低温において液体ヘリウムの流動性が高まり、容器の壁面をつたって外へ溢れ出たり、原子一個が通れる程度の隙間に浸透したりする現象で、量子効果が巨視的に現れたものである。1937年、ヘリウム4が超流動性を示すことをピョートル・カピッツァが発見した。.

新しい!!: マイスナー効果と超流動 · 続きを見る »

臨界磁場

臨界磁場(りんかいじば、Hc)とは、超伝導状態を破壊してしまう磁場の値のこと。外部からの磁場が臨界磁場より強くなければ、超伝導体はマイスナー効果により磁場を排除するが、磁場が臨界磁場を超えると超伝導状態ではなくなってしまう。磁場の反応の違いから超伝導体には第一種超伝導体と第二種超伝導体の二種類がある。第二種超伝導体はHc1とHc2の2つの臨界磁場を持つ。これからは以下の項目で述べる。.

新しい!!: マイスナー効果と臨界磁場 · 続きを見る »

電磁石

レノイドにより発生した磁界(断面図) 電磁石(でんじしゃく、electromagnet)は通常、磁性材料の芯のまわりに、コイルを巻き、通電することによって一時的に磁力を発生させる磁石である。機械要素として用いられる。電流を止めると磁力は失われる。 1825年にイギリス人の電気技術者である ウィリアム・スタージャンによって発明された。 最初の電磁石は蹄鉄形をしている鉄に数回ほど緩く巻いたコイルであった。 コイルに電流を流すと電磁石は磁化し、電流を止めるとコイルは反磁化した。 永久磁石と比較したときのメリットとして、通電を止めることでほぼ磁力を0にすることができること、同じサイズの永久磁石より強い磁力を発生することができること、電流の向きを変えることによって磁石の極を入れ替えられることなどが挙げられる。欠点は、通常、電気抵抗があるため電流を流し続けるには電力を供給し続けなければならないことである。この欠点は超伝導を使えば解決できるが、かなりの低温が必要なので日常で使うのは難しい。 おおざっぱにいえば、電磁石の発生する力は、コイルの巻き数とコイルに流す電流の大きさに比例する。ただしコイルの巻き数を増やすと電線が長くなるが、直流で駆動する場合、電気抵抗も同じように増加するため、電圧が同じであれば電流が減るという関係になっている。鉄芯についていえば、鉄芯の材質の透磁率、および断面積が大きいほど強い磁力を発生することができる。このため永久磁石に比べて安価である。.

新しい!!: マイスナー効果と電磁石 · 続きを見る »

電磁誘導

電磁誘導(でんじゆうどう、)とは、磁束が変動する環境下に存在する導体に電位差(電圧)が生じる現象である。また、このとき発生した電流を誘導電流という。 一般には、マイケル・ファラデーによって1831年に誘導現象が発見されたとされるが、先にジョセフ・ヘンリーに発見されている。また、が1829年に行った研究によって、既に予想されていたとも言われる。 ファラデーは、閉じた経路に発生する起電力が、その経路によって囲われた任意の面を通過する磁束の変化率に比例することを発見した。すなわち、これは導体によって囲われた面を通過する磁束が変化した時、すべての閉回路には電流が流れることを意味する。これは、磁束の強さそれ自体が変化した場合であっても導体が移動した場合であっても適用される。 電磁誘導は、発電機、誘導電動機、変圧器など多くの電気機器の動作原理となっている。.

新しい!!: マイスナー効果と電磁誘導 · 続きを見る »

温度

温度(おんど、temperature)とは、温冷の度合いを表す指標である。二つの物体の温度の高低は熱的な接触により熱が移動する方向によって定義される。すなわち温度とは熱が自然に移動していく方向を示す指標であるといえる。標準的には、接触により熱が流出する側の温度が高く、熱が流入する側の温度が低いように定められる。接触させても熱の移動が起こらない場合は二つの物体の温度が等しい。 統計力学によれば、温度とは物質を構成する分子がもつエネルギーの統計値である。熱力学温度の零点(0ケルビン)は絶対零度と呼ばれ、分子の運動が静止する状態に相当する。ただし絶対零度は極限的な状態であり、有限の操作で物質が絶対零度となることはない。また、量子的な不確定性からも分子運動が止まることはない。 温度はそれを構成する粒子の運動であるから、化学反応に直結し、それを元にするあらゆる現象における強い影響力を持つ。生物にはそれぞれ至適温度があり、ごく狭い範囲の温度の元でしか生存できない。なお、日常では単に温度といった場合、往々にして気温のことを指す場合がある。.

新しい!!: マイスナー効果と温度 · 続きを見る »

ここにリダイレクトされます:

完全反磁性

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »