ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
無料
ブラウザよりも高速アクセス!
 

ニュートリノ

索引 ニュートリノ

ニュートリノ()は、素粒子のうちの中性レプトンの名称。中性微子とも書く。電子ニュートリノ・ミューニュートリノ・タウニュートリノの3種類もしくはそれぞれの反粒子をあわせた6種類あると考えられている。ヴォルフガング・パウリが中性子のβ崩壊でエネルギー保存則と角運動量保存則が成り立つように、その存在仮説を提唱した。「ニュートリノ」の名はβ崩壊の研究を進めたエンリコ・フェルミが名づけた。フレデリック・ライネスらの実験により、その存在が証明された。.

109 関係: 原子核原子時計つくば市反粒子坂田昌一大マゼラン雲太陽ニュートリノ宇宙線小柴昌俊中川昌美中性子仮説弱い相互作用強い相互作用ミューニュートリノミュー粒子メルヴィン・シュワーツレプトン (素粒子)レプトン数レオン・レーダーマンロスアラモス国立研究所ヴォルフガング・パウリヘリシティーパーティクルデータグループパイ中間子ビッグバンフレデリック・ライネスフィジカル・レビューフェルミ国立加速器研究所フェルミ粒子ニュートリノ天文学ニュートリノ振動ニールス・ボーアベータ崩壊アルファ崩壊アルファ粒子アルベルト・アインシュタインイタリア語エネルギー保存の法則エンリコ・フェルミカイラリティクライド・カワングラン・サッソグローバル・ポジショニング・システムシーソー機構ジャック・シュタインバーガージュネーヴジェームズ・チャドウィックスーパーカミオカンデスピン角運動量...ステライルニュートリノタウニュートリノタウ粒子光子光年光速粒子素粒子産経新聞牧二郎物理学特殊相対性理論角運動量保存の法則誤差読売新聞高エネルギー加速器研究機構質量超相対論的極限超新星重力相互作用長母音電子電子ボルト電子ニュートリノ電磁相互作用電荷陽子陽電子MiniBooNEOPERASN 1987A暗黒物質接尾辞梶田隆章標準模型欧州原子核研究機構毎日新聞有意戸塚洋二10月6日10月7日11月13日11月18日11月19日1930年1932年1953年1959年1962年1987年1998年2001年2004年2007年2011年2012年2月23日4月11日9月23日 インデックスを展開 (59 もっと) »

原子核

原子核(げんしかく、atomic nucleus)は、単に核(かく、nucleus)ともいい、電子と共に原子を構成している。原子の中心に位置する核子の塊であり、正の電荷を帯びている。核子は、基本的には陽子と中性子から成っているが、通常の水素原子(軽水素)のみ、陽子1個だけである。陽子と中性子の個数、すなわち質量数によって原子核の種類(核種)が決まる。 原子核の質量を半経験的に説明する、ヴァイツゼッカー=ベーテの質量公式(原子核質量公式、他により改良された公式が存在する)がある。.

新しい!!: ニュートリノと原子核 · 続きを見る »

原子時計

原子時計(げんしどけい、atomic clock)は、原子や分子のスペクトル線の高精度な周波数標準に基づき極めて正確な時間を刻む時計である。高精度のものは10-15(3000万年に1秒)程度、小型化された精度の低いものでも10-11(3000年に1秒)程度の誤差である。 原子時計に基づく時刻系を原子時と呼ぶ。現在のSI秒および国際原子時(International Atomic Time)は原子時計に基づく。.

新しい!!: ニュートリノと原子時計 · 続きを見る »

つくば市

つくばセンター(写真手前)と筑波山(写真奥) つくば市(つくばし)は、茨城県南部に位置する市である。学術・研究都市としての筑波研究学園都市はつくば市全域を区域とする。業務核都市、国際会議観光都市に指定されている。.

新しい!!: ニュートリノとつくば市 · 続きを見る »

反粒子

反粒子(はんりゅうし)とは、ある素粒子(または複合粒子)と比較して、質量とスピンが等しく、電荷など正負の属性が逆の粒子を言う。特に陽電子や反陽子などの反レプトンや反バリオンをさす場合もある。 反粒子が通常の粒子と衝突すると対消滅を起こし、すべての質量がエネルギーに変換される。逆に、粒子反粒子対の質量よりも大きなエネルギーを何らかの方法(粒子同士の衝突や光子などの相互作用)によって与えると、ある確率で粒子反粒子対を生成することができ、これを対生成と呼ぶ。.

新しい!!: ニュートリノと反粒子 · 続きを見る »

坂田昌一

坂田 昌一(さかた しょういち、1911年1月18日 - 1970年10月16日)は日本の物理学者。元名古屋大学教授。湯川秀樹、朝永振一郎とともに日本の素粒子物理学をリードした。 特に、1950年代半ばから1960年代半ばまで、坂田の率いるグループは素粒子の構造に関しては、世界の最先端を走り続け、素粒子論の基本構造を解明し、追随をゆるさなかった。.

新しい!!: ニュートリノと坂田昌一 · 続きを見る »

大マゼラン雲

大マゼラン雲(だいマゼランうん)は、かじき座からテーブルさん座にかけて位置する銀河である。.

新しい!!: ニュートリノと大マゼラン雲 · 続きを見る »

太陽ニュートリノ

標準太陽モデルにおける太陽ニュートリノ(陽子-陽子連鎖反応) 太陽ニュートリノ(Solar neutrino)は、核融合の結果、太陽で生成される電子ニュートリノである。 主に次の陽子-陽子連鎖反応で生成する。 この反応で、太陽ニュートリノ全体の86%が生成される。図のとおり、標準太陽モデルでの陽子-陽子連鎖反応では、重水素は他の陽子と融合し、ヘリウム3原子とガンマ線になる。この反応は以下のように表せる。 ヘリウム4は、前の反応で形成されたヘリウム3から以下のように作られる。 系の中にヘリウム3とヘリウム4がどちらも存在すると、下記のように両ヘリウム原子が融合してベリリウムが形成される。 ベリリウム中には陽子が4つあるが中性子が3つしかないため、ここから2つの経路に分かれる。ベリリウムは電子を捕獲してリチウム7と電子ニュートリノを形成する。または、恒星中に豊富に存在する陽子を捕獲してホウ素8を形成する。両反応は、それぞれ以下のように表せる。 この反応で、太陽ニュートリノの14%が作られる。リチウム7は陽子と結合し、2つのヘリウム4を形成する。 過剰な陽子が存在するため、ホウ素8はベータ(+)崩壊し、以下のようにベリリウム8を形成する。 この反応で、太陽ニュートリノの約0.02%が作られる。これらの少数の太陽ニュートリノは、大きなエネルギーを持つ。 太陽ニュートリノの最大部分は陽子-陽子相互作用から直接生成し、せいぜい400 keVの低いエネルギーである。他に、最大エネルギーが18 MeVにもなるいくつかの別の生成機構が存在する。地球に注ぐニュートリノの流束の量は、粒子数で約7・1010個/cm2/sである。 ニュートリノの数は、標準太陽モデルで予測できる。検出される電子ニュートリノの数は予測される数の1/3に過ぎず、この現象は太陽ニュートリノ問題として知られる。ここからニュートリノ振動のアイデアが考えられ、実際にニュートリノのフレーバーは変化しうる。この現象は、サドベリー・ニュートリノ天文台で全ての種類の太陽ニュートリノの流束全体を測定し、それが従前に予測された電子ニュートリノの数と合致したことで確認され、同時にニュートリノが質量を持つことも確認された。 太陽ニュートリノのエネルギースペクトルも標準太陽モデルで予測できる。各々のニュートリノのエネルギー範囲によって感度の良いニュートリノ検出法が異なるため、ニュートリノのエネルギースペクトルを知ることは重要である。ホームステーク実験では塩素が用いられ、ベリリウム7の崩壊で生成する太陽ニュートリノに対して最も感度が高かった。サドベリー・ニュートリノ天文台はホウ素8由来の太陽ニュートリノに対して最も高感度である。ガリウムは、陽子-陽子連鎖反応で生成する太陽ニュートリノに対して最も感度が高い。2012年、Borexinoとして知られる共同実験は、太陽核に存在する重水素の1/400を生成するpep 反応由来の低いエネルギーのニュートリノを検出したと報告した。検出器は、100トンの液体を含み、この比較的珍しい熱核融合反応由来の衝突を平均で毎日3回の頻度で検出した。.

新しい!!: ニュートリノと太陽ニュートリノ · 続きを見る »

宇宙線

宇宙線(うちゅうせん、Cosmic ray)は、宇宙空間を飛び交う高エネルギーの放射線のことである名越 2011 p.3。主な成分は陽子であり、アルファ粒子、リチウム、ベリリウム、ホウ素、鉄などの原子核が含まれている。地球にも常時飛来している。.

新しい!!: ニュートリノと宇宙線 · 続きを見る »

小柴昌俊

小柴 昌俊(こしば まさとし、1926年(大正15年)9月19日 - )は、日本の物理学者・天文学者。1987年、自らが設計を指導・監督したカミオカンデによって史上初めて自然に発生したニュートリノの観測に成功したことにより、2002年にノーベル物理学賞を受賞した。日本学士院会員。 学位は、ロチェスター大学Ph.D.、東京大学理学博士。称号は日本学術会議栄誉会員、東京大学特別栄誉教授・東京大学名誉教授、明治大学名誉博士、東京都名誉都民、杉並区名誉区民、横須賀市名誉市民、杉並区立桃井第五小学校名誉校長。勲等は勲一等旭日大綬章、文化勲章受章。.

新しい!!: ニュートリノと小柴昌俊 · 続きを見る »

中川昌美

中川 昌美(なかがわ まさみ 1932年 - 2001年3月10日)は、日本の物理学者。理学博士(名古屋大学)。 元名城大学理工学部教授。三重県出身。 専門は、素粒子論で、坂田学派と呼ばれる坂田昌一の弟子の一人。1962年、坂田昌一、牧二郎とともに、ニュートリノ振動を提唱した(ポンテコルボ・牧・中川・坂田行列(PMNS行列) )ことで知られる。.

新しい!!: ニュートリノと中川昌美 · 続きを見る »

中性子

中性子(ちゅうせいし、neutron)とは、原子核を構成する粒子のうち、無電荷の粒子の事で、バリオンの1種である。原子核反応式などにおいては記号 n で表される。質量数は原子質量単位で約 、平均寿命は約15分でβ崩壊を起こし陽子となる。原子核は、陽子と中性子と言う2種類の粒子によって構成されている為、この2つを総称して核子と呼ぶ陽子1個で出来ている 1H と陽子3個で出来ている 3Li の2つを例外として、2015年現在の時点で発見報告のある原子の内、最も重い 294Og までの全ての"既知の"原子核は陽子と中性子の2種類の核子から構成されている。。.

新しい!!: ニュートリノと中性子 · 続きを見る »

仮説

仮説(かせつ、hypothesis)とは、真偽はともかくとして、何らかの現象や法則性を説明するのに役立つ命題のこと。.

新しい!!: ニュートリノと仮説 · 続きを見る »

弱い相互作用

弱い相互作用(よわい そうごさよう、)とは、素粒子の間で作用する4つの基本相互作用の内の一つである。弱い核力、あるいは単に弱い力とも呼ばれる。この相互作用による効果として代表的なものにベータ崩壊がある。電磁相互作用と比較して、力が非常に弱いことからこの名がついた。.

新しい!!: ニュートリノと弱い相互作用 · 続きを見る »

強い相互作用

強い相互作用(つよいそうごさよう、Strong interaction)は、基本相互作用の一つである。ハドロン間の相互作用や、原子核内の各核子同士を結合している力(核力)を指し、標準模型においては量子色力学によって記述される。強い力、強い核力とも。その名の通り電磁相互作用に比べて約137倍の強さがある。 強い相互作用の理解は、歴史的には湯川秀樹による、パイ中間子の交換によって核子に働く核力の説明に始まるが、1970年代前半の量子色力学の成立によって、ゲージ理論として完成した。.

新しい!!: ニュートリノと強い相互作用 · 続きを見る »

ミューニュートリノ

ミューニュートリノ(muon neutrino)は、素粒子標準模型における第二世代のニュートリノである。レプトンの三世代構造において、同じく第二世代の荷電レプトンであるミュー粒子と対をなすため、ミューニュートリノと名付けられた。 1940年代初頭に何人かの研究者によって理論的に予測され、1962年にレオン・レーダーマン、メルヴィン・シュワーツ、ジャック・シュタインバーガーらによって検出された。ニュートリノとしては、2番目に発見された。この発見によって彼らに1988年のノーベル物理学賞が授与された。.

新しい!!: ニュートリノとミューニュートリノ · 続きを見る »

ミュー粒子

ミュー粒子 (muon, μ) とは、素粒子標準模型における第二世代の荷電レプトンである。英語名でミューオン(時にはミュオン)と表記することもある。.

新しい!!: ニュートリノとミュー粒子 · 続きを見る »

メルヴィン・シュワーツ

メルヴィン・シュワーツ(Melvin Schwartz、1932年11月2日 - 2006年8月28日)はアメリカ合衆国の物理学者。1988年、ニュートリノビーム法、およびミューニュートリノの発見によるレプトンの二重構造の実証により、レオン・レーダーマン、ジャック・シュタインバーガーと共にノーベル物理学賞を受賞。.

新しい!!: ニュートリノとメルヴィン・シュワーツ · 続きを見る »

レプトン (素粒子)

レプトン (lepton) は、素粒子のグループの一つであり、クォークとともに物質の基本的な構成要素である。軽粒子とも呼ばれるが、素粒子物理学者がこの名前で呼ぶことは殆どない。 レプトンという語は、「軽い」を意味する と粒子を意味する接尾語"-on"から、1948年にレオン・ローゼンフェルトによって作られた。.

新しい!!: ニュートリノとレプトン (素粒子) · 続きを見る »

レプトン数

レプトン数 (lepton number) は、粒子の性質を表す量子数の一つである。.

新しい!!: ニュートリノとレプトン数 · 続きを見る »

レオン・レーダーマン

レオン・マックス・レーダーマン(Leon Max Lederman, 1922年7月15日 - )はアメリカ合衆国の実験物理学者。2代目の所長としてフェルミ研究所を1978年から1988年まで率いた。1988年ニュートリノビーム法、およびミューニュートリノの発見によるレプトンの二重構造の実証によりノーベル物理学賞を受賞した。「笑う実験物理学者」の異名をもち著書に『神がつくった究極の素粒子』などがある。 ニューヨーク州バッファローに生まれた。1943年ニューヨーク市立大学シティカレッジ卒業。1951年コロンビア大学で博士号を取得、1989年の定年退職までコロンビア大学で教鞭を執った。その間、Eugene Higgins Professorに就任、フェルミ研究所の所長も兼務した。1962年にブルックヘブンの陽子加速器を使って、ニュートリノの反応を調べ電子ニュートリノとμニュートリノが別のものであることを証明した。1977年ボトムクォークと反ボトムクォークの対である「ウプシロン中間子」を発見した。1978年から1988年までフェルミ研究所の所長を務めた。コロンビア大学退職後も、シカゴ大学、イリノイ工科大学で教えている。.

新しい!!: ニュートリノとレオン・レーダーマン · 続きを見る »

ロスアラモス国立研究所

アラモス国立研究所(ロスアラモスこくりつけんきゅうじょ、Los Alamos National Laboratory, LANL)は、アメリカ合衆国ニューメキシコ州ロスアラモスに、第二次世界大戦中の1943年に、マンハッタン計画の中で原子爆弾の開発を目的として創設されたアメリカの国立研究機関である。現所長は、チャールズ・マクミラン (Charles McMillan)。.

新しい!!: ニュートリノとロスアラモス国立研究所 · 続きを見る »

ヴォルフガング・パウリ

ヴォルフガング・エルンスト・パウリ(Wolfgang Ernst Pauli, 1900年4月25日 - 1958年12月15日)はオーストリア生まれのスイスの物理学者。スピンの理論や、現代化学の基礎となっているパウリの排他律の発見などの業績で知られる。 アインシュタインの推薦により、1945年に「1925年に行われた排他律、またはパウリの原理と呼ばれる新たな自然法則の発見を通じた重要な貢献」に対してノーベル物理学賞を受賞した。.

新しい!!: ニュートリノとヴォルフガング・パウリ · 続きを見る »

ヘリシティー

ヘリシティー (helicity) は、物理学において、螺旋 (helix) の巻き方に関係する現象を言及する。.

新しい!!: ニュートリノとヘリシティー · 続きを見る »

パーティクルデータグループ

パーティクル・データ・グループ(Particle Data Group)とは、素粒子物理学などの分野の物理学者による国際的コラボレーションのひとつ。 素粒子やそれに準ずる基本的な粒子について、過去に行われた実験の結果などから、それらの粒子の基本的な性質を一覧にまとめて出版するなどの活動を行っている。.

新しい!!: ニュートリノとパーティクルデータグループ · 続きを見る »

パイ中間子

パイ中間子(パイちゅうかんし、π–meson)は、核子を相互につなぎ原子核を安定化する引力(強い相互作用)を媒介するボソンの一種である。パイ粒子、パイオン(Pion)とも呼ぶ。 当時大阪大学の講師であった湯川秀樹が、その存在を中間子論で予言した。ミュー粒子が1936年に初めて発見された当時、ミュー粒子はこの役割を担う粒子であるとされたが後に強い相互作用を行わないことが判明し、1947年に荷電パイ中間子、1950年に中性パイ中間子が発見され、これらが湯川秀樹の予言した粒子であることが明らかとなった。 その線量分布の特性から負電荷のパイオンはスイスやカナダ・アメリカでがん治療に用いられた。.

新しい!!: ニュートリノとパイ中間子 · 続きを見る »

ビッグバン

ビッグバン理論では、宇宙は極端な高温高密度の状態で生まれた、とし(下)、その後に空間自体が時間の経過とともに膨張し、銀河はそれに乗って互いに離れていった、としている(中、上)。 ビッグバン(Big Bang)とは、宇宙の開闢直後、時空が指数関数的に急膨張したインフレーションの終了後に相転移により生まれた超高温高密度のエネルギーの塊のことである。また、宇宙は非常に高温高密度の状態から始まり、それが大きく膨張することによって低温低密度になっていったとする膨張宇宙論のことをビッグバン理論 (Big bang theory) という。 「ビッグバン」という語は、狭義では宇宙の(ハッブルの法則に従う)膨張が始まった時点を指す。その時刻は今から138.2億年(13.82 × 109年)前と計算されている。より広義では、宇宙の起源や宇宙の膨張を説明する、現代的な宇宙論的パラダイムをも指す言葉である。 ビッグバン理論(ビッグバン仮説)では「宇宙は「無」の状態から誕生した」とされるが、この「無」やなぜ「無」から宇宙が生まれたのかなどの問題は未だ謎のままである。 遠方の銀河がハッブルの法則に従って遠ざかっているという観測事実を一般相対性理論を適用して解釈すれば、宇宙が膨張しているという結論が得られる。宇宙膨張を過去へと外挿すれば、宇宙の初期には全ての物質とエネルギーが一カ所に集まる高温度・高密度状態にあったことになる。この初期状態、またはこの状態からの爆発的膨張をビッグバンという。この高温・高密度の状態よりさらに以前については、一般相対性理論によれば重力的特異点になるが、物理学者たちの間でこの時点の宇宙に何が起きたかについては広く合意されているモデルはない。 20世紀前半までは、天文学者の間でも「宇宙は不変で定常的」という考え方が支配的だった。1948年にジョージ・ガモフは高温高密度の宇宙がかつて存在していたことの痕跡として宇宙マイクロ波背景放射 (CMB) が存在することを主張、その温度を5Kと推定した。このCMB が1964年になって発見されたことにより、対立仮説(対立理論)であった定常宇宙論の説得力が急速に衰えた。その後もビッグバン理論を高い精度で支持する観測結果が得られるようになり、膨張宇宙論が多数派を占めるようになった。.

新しい!!: ニュートリノとビッグバン · 続きを見る »

フレデリック・ライネス

フレデリック・ライネス(Frederick Reines 、1918年3月16日 – 1998年8月26日)は、アメリカ合衆国の物理学者。.

新しい!!: ニュートリノとフレデリック・ライネス · 続きを見る »

フィジカル・レビュー

『フィジカル・レビュー』(英語:Physical Review)はアメリカ物理学会が発行する学術雑誌で、物理学の専門誌としては最も権威がある。現在、Physical Review AからEまでの領域別専門誌と、物理学全領域を扱う速報誌Physical Review Lettersに分かれており、特にPhysical Review Lettersに論文を載せることは物理学者の一つの目標となっている。.

新しい!!: ニュートリノとフィジカル・レビュー · 続きを見る »

フェルミ国立加速器研究所

フェルミ国立加速器研究所(フェルミこくりつかそくきけんきゅうじょ、英称:Fermi National Accelerator Laboratory、通称:フェルミ研究所、Fermilab、FNAL)は、アメリカ合衆国イリノイ州シカゴ近郊バタヴィアにある米国エネルギー省の国立高エネルギー物理学研究所。 超伝導磁石を用いた大型(直径約2km、磁場の最大強さ2テスラ)の陽子・反陽子衝突型加速器テバトロン (Tevatron) を有し、トップクォークの検出に成功したことでも有名。 研究所の名前は、「原子炉の父」こと原子物理学者エンリコ・フェルミに由来する。.

新しい!!: ニュートリノとフェルミ国立加速器研究所 · 続きを見る »

フェルミ粒子

フェルミ粒子(フェルミりゅうし)は、フェルミオン(Fermion)とも呼ばれるスピン角運動量の大きさが\hbarの半整数 (1/2, 3/2, 5/2, …) 倍の量子力学的粒子であり、その代表は電子である。その名前は、イタリア=アメリカの物理学者エンリコ・フェルミ (Enrico Fermi) に由来する。.

新しい!!: ニュートリノとフェルミ粒子 · 続きを見る »

ニュートリノ天文学

ニュートリノ天文学(ニュートリノてんもんがく、英語:neutrino astronomy)は、天文学の一分野。太陽や超新星爆発で生成されるニュートリノを観測し、天文現象の解明に役立てることを目的とする。ニュートリノ天文学はまだ発展途上の分野であり、確認されている地球外のニュートリノ源は太陽と超新星SN 1987Aのみである。 観測装置としてはカミオカンデ(解体済み)、スーパーカミオカンデ、カムランド、サドベリー・ニュートリノ天文台 (SNO)、ANTARES、BDUNT、 アイスキューブなどがある。 東京大学名誉教授の小柴昌俊、ペンシルベニア大学名誉教授のレイモンド・デービスがニュートリノ天文学のさきがけとなる成果をあげたとして、2002年にノーベル物理学賞を受賞した。.

新しい!!: ニュートリノとニュートリノ天文学 · 続きを見る »

ニュートリノ振動

ニュートリノ振動(ニュートリノしんどう、 )は、生成時に決定されたニュートリノのフレーバー(電子、ミューオン、タウ粒子のいずれか)が、後に別のフレーバーとして観測される素粒子物理学での現象。その存在確率はニュートリノが伝搬していく過程で周期的に変化(すなわち振動)する。これはニュートリノが質量を持つことにより起きるとされ、素粒子物理学の標準模型では説明できない。.

新しい!!: ニュートリノとニュートリノ振動 · 続きを見る »

ニールス・ボーア

ニールス・ヘンリク・ダヴィド・ボーア(Niels Henrik David Bohr、1885年10月7日 - 1962年11月18日)は、デンマークの理論物理学者。量子論の育ての親として、前期量子論の展開を指導、量子力学の確立に大いに貢献した。王立協会外国人会員。.

新しい!!: ニュートリノとニールス・ボーア · 続きを見る »

ベータ崩壊

ベータ崩壊(ベータほうかい、beta decay)とは、放射線としてベータ線(電子)を放出する放射性崩壊の一種である。 後にベータ線のみを放出するとするとベータ線のエネルギーレベルの連続性を説明できないことから、電子(ベータ線)と同時にニュートリノと呼ばれる粒子も放出する弱い相互作用の理論として整理された。.

新しい!!: ニュートリノとベータ崩壊 · 続きを見る »

アルファ崩壊

アルファ崩壊(アルファほうかい、α崩壊、alpha decay)とは、放射線としてアルファ線(α線)を放出する放射性崩壊の一種である。アルファ崩壊が発生する原因は量子力学におけるトンネル効果である。.

新しい!!: ニュートリノとアルファ崩壊 · 続きを見る »

アルファ粒子

フレミング左手の法則 ベータ線の実態である電子やガンマ線と異なり、ヘリウム4の原子核であるアルファ粒子は一枚の紙すら通過できない。 原子核がアルファ崩壊してアルファ粒子を放出している アルファ粒子(アルファりゅうし、α粒子、alpha particle)は、高い運動エネルギーを持つヘリウム4の原子核である。陽子2個と中性子2個からなる。放射線の一種のアルファ線(α線、alpha ray)は、アルファ粒子の流れである。 固有の粒子記号は持たず、ヘリウム4の2価陽イオンとして (より厳密には )と表される。.

新しい!!: ニュートリノとアルファ粒子 · 続きを見る »

アルベルト・アインシュタイン

アルベルト・アインシュタイン日本語における表記には、他に「アルト・アインシュタイン」(現代ドイツ語の発音由来)、「アルト・アインタイン」(英語の発音由来)がある。(Albert Einstein アルベルト・アインシュタイン、アルバート・アインシュタイン アルバ(ー)ト・アインスタイン、アルバ(ー)タインスタイン、1879年3月14日 - 1955年4月18日)は、ドイツ生まれの理論物理学者である。 特殊相対性理論および一般相対性理論、相対性宇宙論、ブラウン運動の起源を説明する揺動散逸定理、光量子仮説による光の粒子と波動の二重性、アインシュタインの固体比熱理論、零点エネルギー、半古典型のシュレディンガー方程式、ボーズ=アインシュタイン凝縮などを提唱した業績などにより、世界的に知られている偉人である。 「20世紀最高の物理学者」や「現代物理学の父」等と評され、それまでの物理学の認識を根本から変えるという偉業を成し遂げた。(光量子仮説に基づく光電効果の理論的解明によって)1921年のノーベル物理学賞を受賞。.

新しい!!: ニュートリノとアルベルト・アインシュタイン · 続きを見る »

イタリア語

イタリア語(イタリアご)は、インド・ヨーロッパ語族イタリック語派に属する言語の1つで、おおよそ6千万人ほどが日常的に使用しており、そのほとんどがイタリアに住んでいる。後置修飾で、基本語順はSVO。イタリアは漢字で「伊太利亜」と表記することから、「伊太利亜語」を略記し伊語と称される。.

新しい!!: ニュートリノとイタリア語 · 続きを見る »

エネルギー保存の法則

ネルギー保存の法則(エネルギーほぞんのほうそく、law of the conservation of energy)とは、「孤立系のエネルギーの総量は変化しない」という物理学における保存則の一つである。しばしばエネルギー保存則とも呼ばれる。 任意の異なる二つの状態について、それらのエネルギー総量の差がゼロであることをいう。たとえば、取り得る状態がすべて分かっているとして、全部で つの状態があったとき、それらの状態のエネルギーを と表す。エネルギー保存の法則が成り立つことは、それらの差について、 が成り立っていることをいう。 時間が導入されている場合には、任意の時刻でエネルギー総量の時間変化量がゼロであることをいい、時間微分を用いて表現される。 エネルギー保存の法則は、物理学の様々な分野で扱われる。特に、熱力学におけるエネルギー保存の法則は熱力学第一法則 と呼ばれ、熱力学の基本的な法則となっている。 熱力学第一法則は、熱力学において基本的な要請として認められるものであり、あるいは熱力学理論を構築する上で成立すべき定理の一つである。第一法則の成立を前提とする根拠は、一連の実験や観測事実のみに基づいており、この意味で第一法則はいわゆる経験則であるといえる。一方でニュートン力学や量子力学など一般の力学において、エネルギー保存の法則は必ずしも前提とされない。.

新しい!!: ニュートリノとエネルギー保存の法則 · 続きを見る »

エンリコ・フェルミ

ンリコ・フェルミ(Enrico Fermi、1901年9月29日 – 1954年11月28日)は、イタリア、ローマ出身の物理学者。統計力学、核物理学および量子力学の分野で顕著な業績を残しており、中性子による元素の人工転換の実験をして、多くの放射性同位元素を作り1938年のノーベル物理学賞を受賞している。フェルミに由来する用語は数多く、フェルミ推定のような方法論やフェルミのパラドックスといった問題、フェルミ粒子のような粒子の分類やフェルミウムといった元素名にその名を残している。他にも物理学の用語にフェルミに因むものが多く存在する。実験家と理論家との2つの顔を持ち、双方において世界最高レベルの業績を残した、史上稀に見る物理学者であった 。.

新しい!!: ニュートリノとエンリコ・フェルミ · 続きを見る »

カイラリティ

イラリティ (chirality) は、ある現象とその鏡像が同一にはならないような性質である。掌性ともいう。数学におけるも参照のこと。粒子のカイラリティは、そのスピンによって定義することができる。2つのカイラリティの間の対称性変換はパリティ変換と呼ばれる。 1957年に呉健雄らによって行われた、コバルト60の原子核の弱い崩壊に対する実験は宇宙のパリティ対称性の破れを実証した。.

新しい!!: ニュートリノとカイラリティ · 続きを見る »

クライド・カワン

1956年頃、ニュートリノの実験を行うクライド・カワン クライド・カワン(Clyde Lorrain Cowan Jr、1919年12月6日-1974年5月24日)は、アメリカ合衆国の物理学者である。フレデリック・ライネスとともに1956年にニュートリノを発見したことで知られる。フレデリック・ライネスは、この業績により1995年にノーベル物理学賞を受賞した。 カワンは、ミシガン州デトロイトで4人兄弟の長男として生まれた。家族はミズーリ州セントルイスに転居し、そこでカワンは公立学校に通った。ミズーリ工科大学の前身であるミズーリ鉱冶金学校に在学中の1939年から1940年、彼はミズーリ鉱山新聞の編集長を務めた。1940年に化学工学を修めて卒業した。 カワンは、アメリカ陸軍航空軍の大尉となり、第二次世界大戦ではブロンズスターを授与された。1936年から1940年にかけて、彼は予備役将校訓練課程に在籍し、アメリカ合衆国が第二次世界大戦に参戦した1941年には、少尉としてアメリカ陸軍のChemical Warfare Serviceに加わった。1942年8月には、ロンドンに駐留するEisenhower's Eighth Air Forceに転属になり、1943年には、ガス攻撃の際に用いる清浄化装置を設計、開発した。翌年、彼はマサチューセッツ工科大学のBritish Branch of the Radiation Laboratoryのスタッフとなった。1945年、彼はイギリス空軍との渉外役となり、技術情報や装置の伝達を改善した。1945年にアメリカ合衆国に戻り、オハイオ州デイトンのライト・パターソン空軍基地で働いた。1946年まで現役であった。 G.I. Billから奨学金を受け、彼はセントルイス・ワシントン大学で修士号、そして1949年に博士号を取った。その後、彼はロスアラモス国立研究所で研究を始め、フレデリック・ライネスと出会った。 1951年、ライネスとカワンはニュートリノの研究を始めた。彼らの研究は、1956年まで続いた。 1957年、カワンはジョージ・ワシントン大学の物理学の教授となった。翌年には米国カトリック大学に移籍し、生涯そこで働いた。また、アメリカ原子力委員会、海軍兵学校、アメリカ陸軍、ジェネラル・ダイナミクス・エレクトリック・ボート、スミソニアン博物館等で顧問を務めた。.

新しい!!: ニュートリノとクライド・カワン · 続きを見る »

グラン・サッソ

ラン・サッソ グラン・サッソ(Gran Sasso)は、アペニン山脈で最も高い山塊で、イタリア中部のアブルッツォ州にある。.

新しい!!: ニュートリノとグラン・サッソ · 続きを見る »

グローバル・ポジショニング・システム

船舶用GPS受信機 グローバル・ポジショニング・システム(Global Positioning System, Global Positioning Satellite, GPS、全地球測位システム)とは、アメリカ合衆国によって運用される衛星測位システム(地球上の現在位置を測定するためのシステムのこと)を指す。 ロラン-C(Loran-C: Long Range Navigation C)システムなどの後継にあたる。.

新しい!!: ニュートリノとグローバル・ポジショニング・システム · 続きを見る »

シーソー機構

素粒子の大統一理論で、特にニュートリノ質量とニュートリノ振動において、シーソー機構とは、ニュートリノの質量の相対的な大きさを理解するための一般的な理論モデルとして用いられる。観察されるニュートリノの質量は電子ボルト eV オーダーで、クオークや荷電レプトンはその何百万倍も重い。 モデルにはいくつかのタイプがあり、それぞれ標準模型を拡張したものである。最も単純なタイプ1のバージョンは、弱電相互作用を起こさないような2つ以上の右巻きのニュートリノ場を仮定し-->、非常に大きな質量スケールがあるとの仮定のもとに標準模型を拡張したものである。この理論では、大統一理論によるスケールで確認できる程度にまで質量スケールを拡張できる。.

新しい!!: ニュートリノとシーソー機構 · 続きを見る »

ジャック・シュタインバーガー

  ジャック・シュタインバーガー(Jack Steinberger、1921年5月25日 - )はアメリカ合衆国、スイスで活動した物理学者。1988年メルヴィン・シュワーツ、レオン・レーダーマンと、「 ニュートリノビーム法、およびミューニュートリノの発見によるレプトンの二重構造の実証」の功績によりノーベル物理学賞を受賞した。 ドイツ・バートキッシンゲンでユダヤ系の家庭に生まれた。1934年ナチスの迫害に対する児童救済のプログラムによりアメリカに移住、後に家族もアメリカに移住、シカゴに住んだ。奨学金でシカゴ大学で学び、化学の学位を得た。第二次世界大戦が始まると、マサチューセッツ工科大学のレーダー研究に派遣され物理を学んだ。戦後シカゴ大学で、エンリコ・フェルミらのもとで物理の学位を取得した。プリンストン大学でオッペンハイマーのもとで働いたあと1949年にカリフォルニア大学のウィッキスの助手となり、シンクロトンの研究に加わった。1年ほどでコロンビア大学(1950-1968年)に移り、1962年, レーダーマンと2種類のニュートリノを確認した。1968年からジュネーブのヨーロッパ素粒子物理学研究所(CERN)に研究の場を移した。1986年に引退するまでCERNで働いた。.

新しい!!: ニュートリノとジャック・シュタインバーガー · 続きを見る »

ジュネーヴ

ュネーヴ(Genève、Geneva)はスイス西部、レマン湖の南西岸に位置する都市(コミューヌ)。フランス語圏に属し、ジュネーヴ州の州都である。.

新しい!!: ニュートリノとジュネーヴ · 続きを見る »

ジェームズ・チャドウィック

ェームズ・チャドウィック(Sir James Chadwick, 1891年10月20日 - 1974年7月24日)は、イギリスの物理学者である。中性子の発見で1935年にノーベル物理学賞を受賞。.

新しい!!: ニュートリノとジェームズ・チャドウィック · 続きを見る »

スーパーカミオカンデ

ーパーカミオカンデ(Super-Kamiokande)とは、岐阜県飛騨市神岡町(旧吉城郡)旧神岡鉱山内に設置された、東京大学宇宙線研究所が運用する世界最大の水チェレンコフ宇宙素粒子観測装置である。 と略されることもある。.

新しい!!: ニュートリノとスーパーカミオカンデ · 続きを見る »

スピン角運動量

ピン角運動量(スピンかくうんどうりょう、spin angular momentum)は、量子力学上の概念で、粒子が持つ固有の角運動量である。単にスピンとも呼ばれる。粒子の角運動量には、スピン以外にも粒子の回転運動に由来する角運動量である軌道角運動量が存在し、スピンと軌道角運動量の和を全角運動量と呼ぶ。ここでいう「粒子」は電子やクォークなどの素粒子であっても、ハドロンや原子核や原子など複数の素粒子から構成される複合粒子であってもよい。 「スピン」という名称はこの概念が粒子の「自転」のようなものだと捉えられたという歴史的理由によるものであるが、現在ではこのような解釈は正しいとは考えられていない。なぜなら、スピンは古典極限 において消滅する為、スピンの概念に対し、「自転」をはじめとした古典的な解釈を付け加えるのは全くの無意味だからであるランダウ=リフシッツ小教程。 量子力学の他の物理量と同様、スピン角運動量は演算子を用いて定義される。この演算子(スピン角運動量演算子)は、スピンの回転軸の方向に対応して定義され、 軸、 軸、 軸方向のスピン演算子をそれぞれ\hat_x,\hat_y,\hat_z と書き表す。これらの演算子の固有値(=これら演算子に対応するオブザーバブルを観測したときに得られる値)は整数もしくは半整数である値 を用いて、 と書き表せる。値 は、粒子のみに依存して決まり、スピン演算子の軸の方向には依存せずに決まる事が知られている。この を粒子のスピン量子数という。 スピン量子数が半整数 になる粒子をフェルミオン、整数 になる粒子をボゾンといい、両者の物理的性質は大きく異る(詳細はそれぞれの項目を参照)。2016年現在知られている範囲において、.

新しい!!: ニュートリノとスピン角運動量 · 続きを見る »

ステライルニュートリノ

テライルニュートリノ (sterile neutrino) は、重力を除く標準模型のその他すべての基本的な力と相互作用をしないとされる仮説上のニュートリノ。右手系のニュートリノ、左手系の反ニュートリノを指すことが多いが、ステライルニュートリノが何種類あるのかはまだわかっていない。.

新しい!!: ニュートリノとステライルニュートリノ · 続きを見る »

タウニュートリノ

タウニュートリノ (tauon neutrino) は、素粒子標準模型における第三世代のニュートリノである。レプトンの三世代構造において、同じく第三世代の荷電レプトンであるタウ粒子と対をなすため、タウニュートリノと名付けられた。 1974年から1977年にマーチン・パールらSLAC国立加速器研究所、ローレンス・バークレー国立研究所による一連の研究でタウ粒子が発見されるとすぐにその存在が理論的に予測され、2000年7月にDONUTによって初めて検出された 。ニュートリノとしては、3番目に発見された。.

新しい!!: ニュートリノとタウニュートリノ · 続きを見る »

タウ粒子

タウ粒子 (tauon, τ) とは、素粒子標準模型の第三世代の荷電レプトンである。英語名でタウオンと表記することもある。.

新しい!!: ニュートリノとタウ粒子 · 続きを見る »

光子

|mean_lifetime.

新しい!!: ニュートリノと光子 · 続きを見る »

光年

光年(こうねん、light-year、Lichtjahr、記号 ly)は、主として天文学で用いられる距離(長さ)の単位であり、正確に 、約9.5兆キロメートルである。1981年まではSI併用単位であった。.

新しい!!: ニュートリノと光年 · 続きを見る »

光速

光速(こうそく、speed of light)、あるいは光速度(こうそくど)とは、光が伝播する速さのことであるニュートン (2011-12)、pp. 24–25.。真空中における光速の値は (≒30万キロメートル毎秒)と定義されている。つまり、太陽から地球まで約8分20秒(8分19秒とする場合もある)、月から地球は、2秒もかからない。俗に「1秒間に地球を7回半回ることができる速さ」とも表現される。 光速は宇宙における最大速度であり、物理学において時間と空間の基準となる特別な意味を持つ値でもある。 現代の国際単位系では長さの単位メートルは光速と秒により定義されている。光速度は電磁波の伝播速度でもあり、マクスウェルの方程式で媒質を真空にすると光速が一定となるということが相対性理論の根本原理になっている。 重力作用も光速で伝播することが相対性理論で予言され、2002年に観測により確認された。.

新しい!!: ニュートリノと光速 · 続きを見る »

粒子

粒子(りゅうし、particle)は、比較的小さな物体の総称である。大きさの基準は対象によって異なり、また形状などの詳細はその対象によって様々である。特に細かいものを指す微粒子といった語もある。.

新しい!!: ニュートリノと粒子 · 続きを見る »

素粒子

物理学において素粒子(そりゅうし、elementary particle)とは、物質を構成する最小の単位のことである。基本粒子とほぼ同義語である。.

新しい!!: ニュートリノと素粒子 · 続きを見る »

産経新聞

旧題字の看板を掲示する販売店も存在する 産経新聞(さんけいしんぶん、題字は産經新聞、英称:THE SANKEI SHIMBUN)は、産業経済新聞社が発行する日本の新聞。 産業経済新聞社はフジテレビジョンやニッポン放送、ポニーキャニオンなどとともにフジサンケイグループに属する。 大阪新聞の僚紙である日本工業新聞(1933年(昭和8年)6月20日創刊)を前身とし、時事新報の流れを汲む。キャッチフレーズは「モノをいう新聞」。.

新しい!!: ニュートリノと産経新聞 · 続きを見る »

牧二郎

牧 二郎(まき じろう、1929年1月10日 - 2005年5月31日)は日本の理論物理学者。京都大学名誉教授。東京都出身。 東京文理科大学(現筑波大学)を卒業、名古屋大学理学部助教授から京都大学基礎物理学研究所教授。のちに湯川秀樹の後を継いで所長。素粒子物理学を研究し、坂田昌一・中川昌美とともにニュートリノ振動を理論的に予測する(ポンテコルボ・牧・中川・坂田行列(PMNS行列))などこの分野において顕著な業績をあげた。日本物理学会会長などを務める。 1960年 名古屋大学 理学博士 論文の題は「素粒子の複合模型について」。 1977年仁科記念賞受賞。.

新しい!!: ニュートリノと牧二郎 · 続きを見る »

物理学

物理学(ぶつりがく, )は、自然科学の一分野である。自然界に見られる現象には、人間の恣意的な解釈に依らない普遍的な法則があると考え、自然界の現象とその性質を、物質とその間に働く相互作用によって理解すること(力学的理解)、および物質をより基本的な要素に還元して理解すること(原子論的理解)を目的とする。化学、生物学、地学などほかの自然科学に比べ数学との親和性が非常に強い。 古代ギリシアの自然学 にその源があり, という言葉も、元々は自然についての一般的な知識の追求を意味しており、天体現象から生物現象までを含む幅広い概念だった。現在の物理現象のみを追求する として自然哲学から独立した意味を持つようになったのは19世紀からである。 物理学の古典的な研究分野は、物体の運動、光と色彩、音響、電気と磁気、熱、波動、天体の諸現象(物理現象)である。.

新しい!!: ニュートリノと物理学 · 続きを見る »

特殊相対性理論

特殊相対性理論(とくしゅそうたいせいりろん、Spezielle Relativitätstheorie、Special relativity)とは、慣性運動する観測者が電磁気学的現象および力学的現象をどのように観測するかを記述する、物理学上の理論である。アルベルト・アインシュタインが1905年に発表した論文に端を発する。特殊相対論と呼ばれる事もある。.

新しい!!: ニュートリノと特殊相対性理論 · 続きを見る »

角運動量保存の法則

角運動量保存の法則(かくうんどうりょうほぞんのほうそく)とは、質点系について、単位時間あたりの全角運動量の変化は外力によるトルク(力のモーメント)に等しい(ただし内力が中心力であるときに限る)という法則である。 この特別な場合として、外力が働かない(もしくは外力が働いていたとしてもそれによるトルクが0の)場合、質点系の角運動量は常に一定である。例えば、フィギュアスケートの選手がスピンをする際、前に突き出した腕を体に引きつけることで回転が速くなる(角速度が大きくなる)。このとき回転軸から腕先までの距離が短くなるため、かわりに回転が速くなることによって、角運動量が一定に保たれる。 回転する「こま」は、回転軸にそって、(上から見て)時計回りなら下向きの、反時計回りなら上向きの角運動量を持っている。独楽の回転軸(それは重心を貫いている)が鉛直方向に平行であれば、独楽にかかる重力と、床から独楽が受ける垂直抗力が共に1本の直線上(回転軸上)にあるため、独楽に働く外力によるトルクは0である。従って、この場合独楽の角運動量は一定であり、独楽は軸周りの回転だけを続ける。ところが、独楽が傾くと独楽にかかる重力と、床から独楽が受ける垂直抗力は、1本の直線上には乗らず、従って、これらの力がトルクを生じる。このトルクが独楽の角運動量を変化される。その結果、独楽は本来の回転軸のまわりの回転に加えて、それとは別の軸(独楽と床が接する点を通る鉛直線)のまわりでも回転をする。それが独楽の「みそすり運動」すなわち歳差運動である。.

新しい!!: ニュートリノと角運動量保存の法則 · 続きを見る »

誤差

誤差(ごさ、error)は、測定や計算などで得られた値 M と、指定値あるいは理論的に正しい値あるいは真値 T の差 ε であり、 で表される。.

新しい!!: ニュートリノと誤差 · 続きを見る »

読売新聞

読売新聞東京本社(千代田区大手町) 読売新聞旧東京本社(千代田区大手町、現存せず) 2010年10月から2014年1月まで読売新聞東京本社の仮社屋として使用されていた旧日産自動車本社ビル(中央区銀座) 読売新聞中部支社新社屋 読売新聞中部支社(旧中部本社)旧社屋 読売新聞大阪本社 読売新聞西部本社 読売新聞(よみうりしんぶん、新聞の題字および漢字制限前の表記は讀賣新聞、英語:Yomiuri Shimbun)は、株式会社読売新聞東京本社、株式会社読売新聞大阪本社および株式会社読売新聞西部本社が発行する新聞である。 題号は、江戸時代に瓦版を読みながら売っていた「読売」に由来する。.

新しい!!: ニュートリノと読売新聞 · 続きを見る »

高エネルギー加速器研究機構

大学共同利用機関法人高エネルギー加速器研究機構(こうエネルギーかそくきけんきゅうきこう、英称:High Energy Accelerator Research Organization)は、高エネルギー物理学・加速器科学・物質構造科学などの総合研究機関として、国立大学法人法により設置された大学共同利用機関法人。2008年ノーベル物理学賞を受賞した小林誠特別栄誉教授が在籍する。 略称はKEK(ケイ・イー・ケイ、または、ケック。機構名のローマ字表記 Kou Enerugii Kasokuki Kenkyū Kikō の略。前身のひとつである高エネルギー物理学研究所のローマ字表記 Kou Enerugii Butsurigaku Kenkyūsho の略を引き継いでいる)。 人間文化研究機構、自然科学研究機構、情報・システム研究機構、宇宙航空研究開発機構と共に「総合研究大学院大学」を構成する。.

新しい!!: ニュートリノと高エネルギー加速器研究機構 · 続きを見る »

質量

質量(しつりょう、massa、μᾶζα、Masse、mass)とは、物体の動かしにくさの度合いを表す量のこと。.

新しい!!: ニュートリノと質量 · 続きを見る »

超相対論的極限

物理学において、粒子が超相対論的であるとは、粒子の速さが光速 に非常に近いことをいう。 マックス・プランクは、粒子のエネルギーは相対論的に静止質量 と運動量 を用いて下式のように静止エネルギーと運動エネルギーの和を用いて表わせることを示した。 超相対論的粒子のエネルギーはほとんど全てがその運動エネルギーであり、従って のように近似できる。 このような状況は、質量を固定して運動量 を非常に大きな値にしたとき、またはエネルギー を固定して質量 を無視できる値にまで小さくしたときに生じる。後者は光子のような質量のない粒子の飛跡を質量のある粒子により導く際に用いられる(を参照)。 一般に、ある式の超相対論的極限とは、 pc ≫ mc2 を仮定したとき、またはローレンツ因子 が非常に大きいとき (γ ≫ 1) に得られる単純化された式のことである。.

新しい!!: ニュートリノと超相対論的極限 · 続きを見る »

超新星

プラーの超新星 (SN 1604) の超新星残骸。スピッツァー宇宙望遠鏡、ハッブル宇宙望遠鏡およびチャンドラX線天文台による画像の合成画像。 超新星(ちょうしんせい、)は、大質量の恒星が、その一生を終えるときに起こす大規模な爆発現象である。.

新しい!!: ニュートリノと超新星 · 続きを見る »

重力相互作用

重力相互作用(じゅうりょくそうごさよう、gravitational interaction)とは、自然界に存在する4つの基本相互作用のうち、重力による相互作用を指し、力の強さは距離の2乗に反比例する。.

新しい!!: ニュートリノと重力相互作用 · 続きを見る »

長母音

長母音(ちょうぼいん)とは、母音の持続時間が長いものをいう。これと対照的に持続時間が短いものは、短母音(たんぼいん)と呼ばれる。.

新しい!!: ニュートリノと長母音 · 続きを見る »

電子

電子(でんし、)とは、宇宙を構成するレプトンに分類される素粒子である。素粒子標準模型では、第一世代の荷電レプトンに位置付けられる。電子は電荷−1、スピンのフェルミ粒子である。記号は e で表される。また、ワインバーグ=サラム理論において弱アイソスピンは−、弱超電荷は−である。.

新しい!!: ニュートリノと電子 · 続きを見る »

電子ボルト

物理学において、電子ボルト(エレクトロンボルト、electron volt、記号: eV)とはエネルギーの単位のひとつ。 素電荷(そでんか)(すなわち、電子1個分の電荷の符号を反転した値)をもつ荷電粒子が、 の電位差を抵抗なしに通過すると得るエネルギーが 。.

新しい!!: ニュートリノと電子ボルト · 続きを見る »

電子ニュートリノ

電子ニュートリノ(electron neutrino)は、素粒子標準模型における第一世代のニュートリノである。レプトンの三世代構造において、同じく第一世代の荷電レプトンである電子と対をなすため、電子ニュートリノと名付けられた。 ベータ崩壊の過程で運動量とエネルギーが喪失するという現象から、1930年にヴォルフガング・パウリによって予測され、1956年にフレデリック・ライネスとクライド・カワンによって最初に検出された 。.

新しい!!: ニュートリノと電子ニュートリノ · 続きを見る »

電磁相互作用

電磁相互作用(でんじそうごさよう)は、電場あるいは磁場から電荷が力を受ける相互作用のことをいい、基本相互作用の一つである。電磁気学によって記述される。場の理論においてラグランジアンに対してU(1)ゲージ対称性を付与することで現れるU(1)ゲージ場の成分が電磁気学におけるいわゆるスカラーポテンシャル及びベクトルポテンシャルと対応し、また自身についても対応する自由ラグランジアンを持っている。ラグランジュ形式で議論することで、物質に対応する変数でオイラーラグランジュ方程式を解くことで電磁場から物質に対しての影響を、逆に電磁場に対応する変数でオイラーラグランジュ方程式を解くことで物質側から電磁場に与える影響を導き出すことができ、それぞれ、通常の力学でのローレンツ力とマクスウェル方程式のうちのガウスの法則とアンペールマクスウェル方程式を導出することになる。.

新しい!!: ニュートリノと電磁相互作用 · 続きを見る »

電荷

電荷(でんか、electric charge)は、素粒子が持つ性質の一つである。電気量とも呼ぶ。電荷の量を電荷量という。電荷量のことを単に電荷と呼んだり、電荷を持つ粒子のことを電荷と呼んだりすることもある。.

新しい!!: ニュートリノと電荷 · 続きを見る »

陽子

陽子(ようし、())とは、原子核を構成する粒子のうち、正の電荷をもつ粒子である。英語名のままプロトンと呼ばれることも多い。陽子は電荷+1、スピン1/2のフェルミ粒子である。記号 p で表される。 陽子とともに中性子によって原子核は構成され、これらは核子と総称される。水素(軽水素、H)の原子核は、1個の陽子のみから構成される。電子が離れてイオン化した水素イオン(H)は陽子そのものであるため、化学の領域では水素イオンをプロトンと呼ぶことが多い。 原子核物理学、素粒子物理学において、陽子はクォークが結びついた複合粒子であるハドロンに分類され、2個のアップクォークと1個のダウンクォークで構成されるバリオンである。ハドロンを分類するフレーバーは、バリオン数が1、ストレンジネスは0であり、アイソスピンは1/2、超電荷は1/2となる。バリオンの中では最も軽くて安定である。.

新しい!!: ニュートリノと陽子 · 続きを見る »

陽電子

陽電子(ようでんし、ポジトロン、英語:positron)は、電子の反粒子。絶対量が電子と等しいプラスの電荷を持ち、その他の電子と等しいあらゆる特徴(質量やスピン角運動量 (1/2))を持つ。.

新しい!!: ニュートリノと陽電子 · 続きを見る »

MiniBooNE

MiniBooNE実験はフェルミ研究所で現在進行中のニュートリノ振動の実験である("BooNE"は"Booster Neutrino Experiment"の略)。人工のミューオンニュートリノビームが800トンのオイルで満たされた検出器に向かって放たれ、ニュートリノによる反応が1280個の 検出器を囲んだ光電子増倍管によって観測される。もし電子ニュートリノがミューオンニュートリノビームの中から見つかれば過去にロスアラモス研究所で行われたLSND実験の結果を証明することになる。.

新しい!!: ニュートリノとMiniBooNE · 続きを見る »

OPERA

OPERA(Oscillation Project with Emulsion-tRacking Apparatus、写真乳剤飛跡検出装置によるニュートリノ振動検証プロジェクト)は、CERNからグラン・サッソへの732km長基線ニュートリノ・ビームラインを使用し、ミューニュートリノから変化したタウニュートリノの出現でニュートリノ振動を検証するための実験である。.

新しい!!: ニュートリノとOPERA · 続きを見る »

SN 1987A

SN 1987A すなわち1987年超新星A は、大マゼラン雲内に発見された超新星である。初めて観測されたのが1987年2月23日であり、これが同年最初に観測された超新星であることから 1987A という符号が付けられている。「SN」は「超新星」を意味する "supernova" の略である。地球からは16.4万光年離れている。23日午前10時30分(UT)に撮影された大マゼラン雲の写真に写っており、可視光で捉えられたのはこれが最初とされる。超新星発見の報告が最初になされたのは24日のことである。超新星の明るさは5月にピークを迎え、視等級にして最大3等級となったあと、数ヵ月かけて徐々に減光した。肉眼で観測された超新星としては1604年に観測された SN 1604(ケプラーの超新星)以来383年ぶりであり、現代の天文学者にとっては初めて超新星を間近に観察する機会となった。 日本では陽子崩壊の観測のために建設されたカミオカンデがこのニュートリノを捉えており、精密な観測を行うことができた成果により建設を主導した東京大学名誉教授の小柴昌俊が2002年にノーベル物理学賞を受賞している。 SN 1987A の超新星爆発を起こした恒星はサンデュリーク-69° 202という質量が太陽の20倍ほどの青色超巨星であることが分かっている。また爆発後には超新星残骸として三重リング構造を持つ星雲状の天体が観測されている。 この三重リングは過去に放出されたガスに光が反射して見えたものと考えられている。.

新しい!!: ニュートリノとSN 1987A · 続きを見る »

暗黒物質

暗黒物質(あんこくぶっしつ、dark matter ダークマター)とは、天文学的現象を説明するために考えだされた「質量は持つが、光学的に直接観測できない」とされる、仮説上の物質である。"銀河系内に遍く存在する"、"物質とはほとんど相互作用しない"などといった想定がされており、間接的にその存在を示唆する観測事実は増えているものの、その正体は未だ不明である。.

新しい!!: ニュートリノと暗黒物質 · 続きを見る »

接尾辞

接尾辞(せつびじ)とは、接辞のうち、語基の後ろに付くもの。接尾語(せつびご)とも言うが、接尾辞は語ではない。.

新しい!!: ニュートリノと接尾辞 · 続きを見る »

梶田隆章

梶田 隆章(かじた たかあき、1959年3月9日 -)は、日本の物理学者、天文学者である。埼玉県東松山市出身。東京大学卓越教授、同大特別栄誉教授、東京大学宇宙線研究所長・教授、兼同研究所附属宇宙ニュートリノ観測情報融合センター長、東京大カブリ数物連携宇宙研究機構主任研究員、埼玉大学フェロー、東京理科大学理工学部物理学科非常勤講師。専門はニュートリノ研究。理学博士。ニュートリノ振動の発見により、2015年にアーサー・B・マクドナルドと共にノーベル物理学賞を受賞した。2017年度より朝日賞選考委員を務めている。.

新しい!!: ニュートリノと梶田隆章 · 続きを見る »

標準模型

標準模型(ひょうじゅんもけい、、略称: SM)とは、素粒子物理学において、強い相互作用、弱い相互作用、電磁相互作用の3つの基本的な相互作用を記述するための理論のひとつである。標準理論(ひょうじゅんりろん)または標準モデル(ひょうじゅんモデル)とも言う。.

新しい!!: ニュートリノと標準模型 · 続きを見る »

欧州原子核研究機構

欧州原子核研究機構(おうしゅうげんしかくけんきゅうきこう、) は、スイスのジュネーヴ郊外でフランスと国境地帯にある、世界最大規模の素粒子物理学の研究所である。.

新しい!!: ニュートリノと欧州原子核研究機構 · 続きを見る »

毎日新聞

毎日新聞大阪本社(大阪市北区) 毎日新聞北海道支社(札幌市中央区) 毎日新聞(まいにちしんぶん、)は、日本の新聞のひとつ。2017年9月期の販売部数(日本ABC協会調べ)は朝刊が約294万部、夕刊が73万部である 。毎日新聞社(毎日新聞グループホールディングス傘下)が発行している。 戦前から朝日新聞と共に2強に数えられていたが、拡販競争と西山事件による経営危機で後れを取り、1960年代後半から1970年代前半に掛けての読売新聞の発行部数増加などで販売不振が続いた。2008年には毎日デイリーニューズWaiWai問題が発覚し、再度経営問題が発生した。 現在のスローガンは、「報道に近道はない」。新聞販売店の愛称は「毎日ニュースポート」であるが、近年は呼称される機会が少ない。.

新しい!!: ニュートリノと毎日新聞 · 続きを見る »

有意

有意(ゆうい、Signifikanz、significance)は、確率論・統計学の用語で、「確率的に偶然とは考えにくく、意味があると考えられる」ことを指す。.

新しい!!: ニュートリノと有意 · 続きを見る »

戸塚洋二

戸塚 洋二 (とつか ようじ、1942年3月6日 - 2008年7月10日) は日本の物理学者。東京大学特別栄誉教授。静岡県富士市出身。富士市名誉市民(第1号)。.

新しい!!: ニュートリノと戸塚洋二 · 続きを見る »

10月6日

10月6日(じゅうがつむいか)はグレゴリオ暦で年始から279日目(閏年では280日目)にあたり、年末まであと86日ある。.

新しい!!: ニュートリノと10月6日 · 続きを見る »

10月7日

10月7日(じゅうがつなのか)はグレゴリオ暦で年始から280日目(閏年では281日目)にあたり、年末まであと85日ある。.

新しい!!: ニュートリノと10月7日 · 続きを見る »

11月13日

11月13日(じゅういちがつじゅうさんにち)はグレゴリオ暦で年始から317日目(閏年では318日目)にあたり、年末まであと48日ある。.

新しい!!: ニュートリノと11月13日 · 続きを見る »

11月18日

11月18日(じゅういちがつじゅうはちにち)はグレゴリオ暦で年始から322日目(閏年では323日目)にあたり、年末まであと43日ある。.

新しい!!: ニュートリノと11月18日 · 続きを見る »

11月19日

11月19日(じゅういちがつじゅうくにち)はグレゴリオ暦で年始から323日目(閏年では324日目)にあたり、年末まであと42日ある。.

新しい!!: ニュートリノと11月19日 · 続きを見る »

1930年

記載なし。

新しい!!: ニュートリノと1930年 · 続きを見る »

1932年

記載なし。

新しい!!: ニュートリノと1932年 · 続きを見る »

1953年

記載なし。

新しい!!: ニュートリノと1953年 · 続きを見る »

1959年

記載なし。

新しい!!: ニュートリノと1959年 · 続きを見る »

1962年

記載なし。

新しい!!: ニュートリノと1962年 · 続きを見る »

1987年

この項目では、国際的な視点に基づいた1987年について記載する。.

新しい!!: ニュートリノと1987年 · 続きを見る »

1998年

この項目では、国際的な視点に基づいた1998年について記載する。.

新しい!!: ニュートリノと1998年 · 続きを見る »

2001年

また、21世紀および3千年紀における最初の年でもある。この項目では、国際的な視点に基づいた2001年について記載する。.

新しい!!: ニュートリノと2001年 · 続きを見る »

2004年

この項目では、国際的な視点に基づいた2004年について記載する。.

新しい!!: ニュートリノと2004年 · 続きを見る »

2007年

この項目では、国際的な視点に基づいた2007年について記載する。.

新しい!!: ニュートリノと2007年 · 続きを見る »

2011年

この項目では、国際的な視点に基づいた2011年について記載する。.

新しい!!: ニュートリノと2011年 · 続きを見る »

2012年

この項目では、国際的な視点に基づいた2012年について記載する。.

新しい!!: ニュートリノと2012年 · 続きを見る »

2月23日

2月23日(にがつにじゅうさんにち)はグレゴリオ暦で年始から54日目にあたり、年末まであと311日(閏年では312日)ある。.

新しい!!: ニュートリノと2月23日 · 続きを見る »

4月11日

4月11日(しがつじゅういちにち)はグレゴリオ暦で年始から101日目(閏年では102日目)にあたり、年末まではあと264日ある。誕生花はヤグルマギク、クンシラン。.

新しい!!: ニュートリノと4月11日 · 続きを見る »

9月23日

9月23日(くがつにじゅうさんにち)はグレゴリオ暦で年始から266日目(閏年では267日目)にあたり、年末まであと99日ある。.

新しい!!: ニュートリノと9月23日 · 続きを見る »

ここにリダイレクトされます:

ミューオンニュートリノニュートリノの質量中性微子

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »