ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
ダウンロード
ブラウザよりも高速アクセス!
 

コラッツの問題

索引 コラッツの問題

ラッツの問題(コラッツのもんだい、Collatz problem)は、数論の未解決問題のひとつである。1937年にローター・コラッツが問題を提示した。問題の結論の予想を指してコラッツの予想と言う。固有名詞に依拠しない表現としては3n+1問題とも言われ、初期にこの問題に取り組んだ研究者の名を冠して、角谷(かくたに)の問題、米田の予想、ウラムの予想、他にはSyracuse問題などとも呼ばれる。数学者ポール・エルデシュは「数学はまだこの種の問題に対する用意ができていない」と述べ、解決した人に500ドルを提供すると申し出た。 コンピュータを用いた計算により、5 × 260 までには反例がないことが確かめられている。 また、2011年度大学入試センター試験数学IIB第6問に題材として取り上げられた。.

18 関係: 偶数大学入試センター試験奇数ポール・エルデシュローター・コラッツヒューリスティクス分散コンピューティングインターネットアーカイブイアン・スチュワートスタニスワフ・ウラムタグシステム確率変数の収束米田信夫角谷静夫関数 (数学)擬似コード数論整数

偶数

偶数(ぐうすう、even number) とは、 を約数に持つ整数、すなわち で割り切れる整数のことをいう。逆に で割り切れない整数のことは、奇数という。 具体的な偶数の例として などが挙げられる。これらはそれぞれ に等しいため、 で割っても余りが生じず、 で割り切ることができる。 より派生して、 で割り切れるが では割り切れない整数を単偶数または半偶数という。これに対して、 で割り切れる整数を複偶数 または全偶数という。 偶数と奇数は、偶数全体、奇数全体をそれぞれ 1 つの元と見て、2 つの元からなる有限体の例を与える。.

新しい!!: コラッツの問題と偶数 · 続きを見る »

大学入試センター試験

大学入試センター本部 受験生に配布された問題冊子 大学入試センター試験(だいがくにゅうしセンターしけん、National Center Test for University Admissions)とは、独立行政法人大学入試センターによって厳密には、独立行政法人大学入試センター法第13条第1項によって、大学入試センター試験は「大学に入学を志願する者の高等学校の段階における基礎的な学習の達成の程度を判定することを主たる目的として大学が共同して実施することとする試験」と定義されているため、実施主体は参加各大学となる。大学入試センターは「問題の作成及び採点その他一括して処理することが適当な業務」を行うこととなっている。、例年1月13日以降の最初の土曜日・日曜日の2日間にわたって行われる、日本の大学の共通入学試験である。かつての国公立大学共通第1次学力試験が大学共通第1次学力試験と改められ、さらに改称して現在に至る。.

新しい!!: コラッツの問題と大学入試センター試験 · 続きを見る »

奇数

奇数(きすう、 odd number)とは、2で割り切れない整数のことをいう。一方、2で割り切れる整数のことは、偶数という。−15, −3, 1, 7, 19 などは全て奇数である。 10進法では、一の位が 1, 3, 5, 7, 9 である数は奇数である。2進法では、20 の位(すなわち一の位)が 1 ならば奇数で、0 ならば偶数である。一般に 2n 進法(n は自然数)において、ある数が偶数であるか奇数であるかは、一の位(n0 の位)を見るだけで判別できる。 偶数と奇数は、位数が2の体の例を与える。.

新しい!!: コラッツの問題と奇数 · 続きを見る »

ポール・エルデシュ

ポール・エルデシュ、エルデーシュ・パール(Erdős Pál, Paul Erdős; (本姓: Engländer), 1913年3月26日 - 1996年9月20日)は、ハンガリー・ブダペスト出身のユダヤ系ハンガリー人の数学者である。20世紀で最も多くの論文を書いた数学者である。彼は、生涯で500人以上という数多くの数学者との共同研究を行ったことと、その奇妙なライフスタイルで知られていた(タイム誌は彼を「変わり者中の変わり者」(The Oddball's Oddball)と称した)。彼は、晩年になってさえも、起きている時間を全て数学に捧げた。彼が亡くなったのは、ワルシャワで開催された会議で幾何学の問題を解いた数時間後のことだった。 数論、組合せ論、グラフ理論をはじめ、集合論、確率論、級数論など幅広い分野で膨大な結果を残した。グラフ理論・数論などにおける確率論的方法、組合せ論の種々のテクニックは著しく、特にセルバーグと共に素数定理の初等的な証明を発見したことは有名である。彼はラムゼー理論を擁護し、貢献し、秩序が必ず現れる条件を研究した。彼の数学は、次々に問題を考えてはそれを解くという独特のスタイルであったが、彼が発する散発的な問題が実際には理論的に重要なものであったり、あるいは新しい理論の発展に非常に重要な貢献をした例も少なくない。 エルデシュは生涯に約1500篇の論文(多くは共著)を発表した。これ以上の論文を発表した数学者は、18世紀のレオンハルト・オイラーのみである。 彼は数学は社会活動であるという信念を持っており、他の数学者と数学論文を書くという目的のためだけに巡回生活を営んでいた。エルデシュが多くの研究者と論文を執筆したことから、エルデシュ数が生まれた。これは、論文の共著者同士で研究者をつないだときに、エルデシュとの間の最短経路上の人数を表したものである。.

新しい!!: コラッツの問題とポール・エルデシュ · 続きを見る »

ローター・コラッツ

ローター・コラッツ (Lothar Collatz, 1910年7月6日 アルンスベルク- 1990年9月26日 ヴァルナ)は、ドイツの数学者。 1937年、現在も未解決問題であるコラッツの問題を提起した。1943年からハノーファー大学教授、1952年からハンブルク大学教授を務めた。 Category:ドイツの数学者 100706 Category:ハンブルク大学の教員 Category:ゴットフリート・ヴィルヘルム・ライプニッツ大学ハノーファーの教員 Category:1910年生 Category:1990年没 Category:数学に関する記事.

新しい!!: コラッツの問題とローター・コラッツ · 続きを見る »

ヒューリスティクス

ヒューリスティック(heuristic, Heuristik)とは、必ず正しい答えを導けるわけではないが、ある程度のレベルで正解に近い解を得ることができる方法である。ヒューリスティックスでは、答えの精度が保証されない代わりに、回答に至るまでの時間が少ないという特徴がある。主に計算機科学と心理学の分野で使用される言葉であり、どちらの分野での用法も根本的な意味は同じであるが、指示対象が異なる。すなわち、計算機科学ではプログラミングの方法を指すが、心理学では人間の思考方法を指すものとして使われる。なお、論理学では仮説形成法と呼ばれている。.

新しい!!: コラッツの問題とヒューリスティクス · 続きを見る »

分散コンピューティング

分散コンピューティング(ぶんさんコンピューティング、英: Distributed computing)とは、プログラムの個々の部分が同時並行的に複数のコンピュータ上で実行され、各々がネットワークを介して互いに通信を行いながら全体として処理が進行する計算手法のことである。複雑な計算などをネットワークを介して複数のコンピュータを利用して行うことで、一台のコンピュータで計算するよりスループットを上げようとする取り組み、またはそれを実現する為の仕組みである。分散処理(ぶんさんしょり)ともいう。並列コンピューティングの一形態に分類されるが、一般に並列コンピューティングと言えば、同時並行に実行する主体は同じコンピュータシステム内のCPU群である。ただし、どちらもプログラムの分割(同時に実行できる部分にプログラムを分けること)が必須である。分散コンピューティングではさらに、それぞれの部分が異なる環境でも動作できるようにしなければならない。例えば、2台の異なるハードウェアを使ったコンピュータで、それぞれ異なるファイルシステム構成であっても動作するよう配慮する必要がある。 問題を複数の部分問題に分けて各コンピュータに実行させるのが基本であり、素数探索や数多く試してみる以外に解決できない問題の対処として用いられているものが多い。分散コンピューティングの例としてBOINCがある。これは、大きな問題を多数の小さな問題に分割し、多数のコンピュータに分配するフレームワークである。その後、それぞれの結果を集めて大きな解を得る。一般的に処理を分散すると一台のコンピュータで計算する場合と比べ、問題データの分配、収集、集計するためのネットワークの負荷が増加し、問題解決の為のボトルネックとなるため、部分問題間の依存関係を減らすことが重要な課題となる。 分散コンピューティングは、コンピュータ同士をネットワーク接続し、効率的に通信できるよう努力した結果として自然に生まれた。しかし、分散コンピューティングはコンピュータネットワークと同義ではない。単にコンピュータネットワークと言った場合、複数のコンピュータが互いにやり取りするが、単一のプログラムの処理を共有することはない。World Wide Web はコンピュータネットワークの例であるが、分散コンピューティングの例ではない。 分散処理を構築するための様々な技術や標準が存在し、一部はその目的に特化して設計されている。例えば、遠隔手続き呼出し (RPC)、Java Remote Method Invocation (Java RMI)、.NET Remoting などがある。.

新しい!!: コラッツの問題と分散コンピューティング · 続きを見る »

インターネットアーカイブ

旧インターネットアーカイブ本部(1996年 - 2009年11月) インターネットアーカイブ (The Internet Archive) は、WWW・マルチメディア資料のアーカイブ閲覧サービスとして有名なウェイバックマシン (Wayback Machine)を運営している団体である。本部はカリフォルニア州サンフランシスコのリッチモンド地区に置かれている。 アーカイブにはプログラムが自動で、または利用者が手動で収集したウェブページのコピー(ウェブアーカイブ)が混在しており、これは「WWWのスナップショット」と呼ばれる。ほか、ソフトウェア・映画・本・録音データ(音楽バンドなどの許可によるライブ公演の録音も含む)などがある。アーカイブは、それらの資料を無償で提供している。.

新しい!!: コラッツの問題とインターネットアーカイブ · 続きを見る »

イアン・スチュワート

イアン・スチュワート(Ian Stewart).

新しい!!: コラッツの問題とイアン・スチュワート · 続きを見る »

スタニスワフ・ウラム

タニスワフ・マルチン・ウラム(Stanisław Marcin Ulam, 1909年4月3日 - 1984年5月13日)は、アメリカ合衆国の数学者。ポーランド出身。数学の多くの分野に貢献しており、また水爆の機構の発案者としてその名を残している。.

新しい!!: コラッツの問題とスタニスワフ・ウラム · 続きを見る »

タグシステム

タグシステム(Tag system)は、1943年にエミール・ポストが発表した決定性計算模型の一種であり、ポスト正準系のごく単純な形式のものである。タグシステムを抽象機械とみなした場合、ポストタグ機械(Post Tag Machine、PTM)とも呼ぶ。大まかに言えば、無限長のFIFOキューとしてのテープ装置を持った有限状態機械であり、状態遷移のたびにテープのヘッド位置から記号を読み取り、ヘッド位置から固定個の記号を消去し、最後尾に記号を追加する。.

新しい!!: コラッツの問題とタグシステム · 続きを見る »

確率変数の収束

数学の確率論の分野において、確率変数の収束(かくりつへんすうのしゅうそく、)に関しては、いくつかの異なる概念がある。確率変数列のある極限への収束は、確率論や、その応用としての統計学や確率過程の研究における重要な概念の一つである。より一般的な数学において同様の概念は確率収束(stochastic convergence)として知られ、その概念は、本質的にランダムあるいは予測不可能な事象の列は、その列から十分離れているアイテムを研究する場合において、しばしば、本質的に不変な挙動へと落ち着くことが予想されることがある、という考えを定式化するものである。異なる収束の概念とは、そのような挙動の特徴づけに関連するものである:すぐに分かる二つの挙動とは、その列が最終的に定数となるか、あるいはその列に含まれる値は変動を続けるがある不変な確率分布によってその変動が表現される、というようなものである。.

新しい!!: コラッツの問題と確率変数の収束 · 続きを見る »

米田信夫

米田 信夫(よねだ のぶお、1930年3月28日 - 1996年4月22日)は日本の数学者、計算機科学者。 1961年東京大学で理学博士号を取得した。博士論文の題は「On ext and exact sequences」。 圏論における米田の補題に名を残している。コラッツの問題とも長く関わり、当時は米田の予想と呼ばれていた。 情報工学ではALGOLに関する業績で知られている。.

新しい!!: コラッツの問題と米田信夫 · 続きを見る »

角谷静夫

角谷 静夫(かくたに しずお、1911年(明治44年)8月28日 - 2004年(平成16年)8月17日 )は日本の数学者。イェール大学名誉教授。娘は文芸批評家の角谷美智子。.

新しい!!: コラッツの問題と角谷静夫 · 続きを見る »

関数 (数学)

数学における関数(かんすう、、、、、函数とも)とは、かつては、ある変数に依存して決まる値あるいはその対応を表す式の事であった。この言葉はライプニッツによって導入された。その後定義が一般化されて行き、現代的には数の集合に値をとる写像の一種であると理解される。.

新しい!!: コラッツの問題と関数 (数学) · 続きを見る »

擬似コード

擬似コード (ぎじコード、pseudocode)とは、アルゴリズムなどを、架空の非常に高水準なプログラミング言語(擬似言語)で記述したものである。Pascal、Fortran、C言語などの既存のプログラミング言語の構文と、自然言語に近い表現を組み合わせて記述することが多い。.

新しい!!: コラッツの問題と擬似コード · 続きを見る »

数論

数論(すうろん、number theory)とは数、特に整数およびそれから派生する数の体系(代数体、局所体など)の性質について研究する数学の一分野である。整数論とも言う。ふつうは代数学の一分野とみなされることが多い。おおむね次の四つに分けられる。;初等整数論;代数的整数論;解析的整数論;数論幾何学 フェルマーの最終定理のように、数論のいくつかの問題については、他の数学の分野に比して問題そのものを理解するのは簡単である。しかし、使われる手法は多岐に渡り、また非常に高度であることが多い。 ガウスは次のような言葉を残している。.

新しい!!: コラッツの問題と数論 · 続きを見る »

整数

数学における整数(せいすう、integer, whole number, Ganze Zahl, nombre entier, número entero)は、0 とそれに 1 ずつ加えていって得られる自然数 (1, 2, 3, 4, …) および 1 ずつ引いていって得られる数 (−1, −2, −3, −4, …) の総称である。 整数は数直線上の格子点として視覚化される 整数の全体からなる集合は普通、太字の Z または黒板太字の \mathbb Z で表す。これはドイツ語 Zahlen(「数」の意・複数形)に由来する。 抽象代数学、特に代数的整数論では、しばしば「代数体の整数環」の元という意味で代数的整数あるいは「整数」という言葉を用いる。有理数全体の成す体はそれ自身が代数体の最も簡単な例であり、有理数体の代数体としての整数環すなわち、「有理数の中で整なもの」の全体の成す環は、本項でいう意味での整数全体の成す環である。一般の「整数」との区別のためにここでいう意味の整数を有理整数 (rational integer) と呼ぶことがある接頭辞「有理(的)」(rational) はそもそも「整数比」であるという意味なので、この呼称は自己循環的にもみえる。しかし、有理整数と呼ぶ場合の「有理」は「有理数の中で」という程度の意味の単なる符牒であって、「整数比」という本来の意味合いに拘るのは徒労である。。.

新しい!!: コラッツの問題と整数 · 続きを見る »

ここにリダイレクトされます:

コラッツの予想コラッツ予想シラキュース問題角谷の予想

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »