ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
無料
ブラウザよりも高速アクセス!
 

静電容量

索引 静電容量

静電容量(せいでんようりょう、)は、コンデンサなどの絶縁された導体において、どのくらい電荷が蓄えられるかを表す量である。電気容量(でんきようりょう、)、またはキャパシタンスとも呼ばれる。.

30 関係: 導体リアクタンスボルト (単位)ファラドアドミタンスインピーダンスインダクタンスクーロンコンデンサコイルサセプタンス絶縁 (電気)発散定理面積誘導障害誘電体誘電率質量長さ電場電子部品電圧電荷電気電気伝導体電流毎ファラド放電容量時間1936年

導体

導体 (conductor).

新しい!!: 静電容量と導体 · 続きを見る »

リアクタンス

リアクタンス(reactance)とは、交流回路のインダクタ(コイル)やキャパシタ(コンデンサ)における電圧と電流の比である。 リアクタンスは電気抵抗と同じ次元を持ち、単位としてはオームを持つが、リアクタンスはエネルギーを消費しない擬似的な抵抗である。誘導抵抗、感応抵抗ともいう。 リアクタンスは、電流の微分方程式の1次微分項の係数および1次積分項の係数であり、ずれた位相成分の比率を示す係数である。.

新しい!!: 静電容量とリアクタンス · 続きを見る »

ボルト (単位)

ボルト(volt、記号:V)は、電圧・電位差・起電力の単位である。名称は、ボルタ電池を発明した物理学者アレッサンドロ・ボルタに由来する。 1ボルトは、以下のように定義することができる。表現の仕方が違うだけで、いずれも値は同じである。.

新しい!!: 静電容量とボルト (単位) · 続きを見る »

ファラド

ファラド(farad、記号:F)は、コンデンサ(キャパシタ、蓄電器)などの静電容量の単位(SI組立単位)である。名称はマイケル・ファラデーに由来するもので、ファラッドともいわれる。なお、同じくマイケル・ファラデーに由来するファラデーという単位があるが、これは電荷の単位である。.

新しい!!: 静電容量とファラド · 続きを見る »

アドミタンス

アドミタンス(admittance、アドミッタンス)は、交流回路における電流と電圧の比である。慣習的に記号 Y、単位としてはジーメンス(表記は)が用いられる。計算を簡略化するため複素数表示(フェーザ表示)で表されることが多い。直流回路における電気伝導の代わりに用いられる。 交流回路における電圧と電流の比である インピーダンス Z とは次の関係がある。 以下では、j: 虚数単位、ω: 交流の角周波数とする。.

新しい!!: 静電容量とアドミタンス · 続きを見る »

インピーダンス

インピーダンス(impedance)は、圧と流の比を表す単語である。圧と流の積は仕事率である。.

新しい!!: 静電容量とインピーダンス · 続きを見る »

インダクタンス

インダクタンス(inductance)は、コイルなどにおいて電流の変化が誘導起電力となって現れる性質である。誘導係数、誘導子とも言う。インダクタンスを目的とするコイルをインダクタといい、それに使用する導線を巻線という。.

新しい!!: 静電容量とインダクタンス · 続きを見る »

クーロン

ーロン(、記号C)は、電荷のSI単位である。クーロンという名称は、フランスの物理学者、シャルル・ド・クーロンの名にちなむ。.

新しい!!: 静電容量とクーロン · 続きを見る »

コンデンサ

ンデンサの形状例。この写真の中での分類としては、足のあるものが「リード形」、長方体のものが「チップ形」である 典型的なリード形電解コンデンサ コンデンサ(Kondensator、capacitor)とは、電荷(静電エネルギー)を蓄えたり、放出したりする受動素子である。キャパシタとも呼ばれる。(日本の)漢語では蓄電器(ちくでんき)などとも。 この素子のスペックの値としては、基本的な値は静電容量である。その他の特性としては印加できる電圧(耐圧)、理想的な特性からどの程度外れているかを示す、等価回路における、直列の誘導性を示す値と直列並列それぞれの抵抗値などがある。一般に国際単位系(SI)における静電容量の単位であるファラド(記号: F)で表すが、一般的な程度の容量としてはそのままのファラドは過大であり、マイクロファラド(μF.

新しい!!: 静電容量とコンデンサ · 続きを見る »

コイル

レノイド コイル(coil)とは、針金などひも状のものを、螺旋状や渦巻状に巻いたもののことで、以下のようなものにその性質が利用され、それらを指して呼ばれることもある。明治末から昭和前期には線輪(せんりん)とも言われた。.

新しい!!: 静電容量とコイル · 続きを見る »

サセプタンス

プタンス(susceptance)は、交流回路において位相を変化させる要素である。アドミタンスの虚数成分と等しい。単位は国際単位系では、ジーメンス (S) が用いられる。かつては、パーミタンスという言葉が用いられた。アドミタンスとの関係は以下のように表される。 Y.

新しい!!: 静電容量とサセプタンス · 続きを見る »

絶縁 (電気)

電気における絶縁とは、電気機械や各種の電気回路・電子回路において、感電防止や電位の分離などを目的として、不導体もしくは各種の部品や装置を利用して電流を遮断することである。 電気の分野における英語のとは、どちらも日本語では絶縁と訳されるが、両者はその目的や動作原理によってやや異なる意味合いを持つ。 絶縁(ぜつえん、insulation)は、電子回路やその部品などにおいて、対象とする2箇所の間で電気抵抗が大きく電圧を掛けても電流が流れない状態を言う。低い電圧を掛けた場合に電流が流れなくとも、高い電圧を掛けると電流が流れる場合があり、その状態を絶縁破壊という。 絶縁(ぜつえん、isolation)は、電気電子回路の一部において、信号や電力は伝達されるが、導体は分離していることを言う。具体的にはトランスやフォトカプラを介した2回路を言う。トランスの場合は電磁誘導によって、フォトカプラの場合は光伝達素子によって電力または信号を伝達する。"isolation"は「分離・隔離」に近い概念と言える。.

新しい!!: 静電容量と絶縁 (電気) · 続きを見る »

発散定理

散定理(はっさんていり、divergence theorem)は、ベクトル場の発散を、その場によって定義される流れの面積分に結び付けるものである。ガウスの定理(Gauss' theorem)とも呼ばれる。1762年にラグランジュによって発見され、その後ガウス(1813年)、グリーン(1825年)、オストログラツキー(1831年)によってそれぞれ独立に再発見された 。オストログラツキーはまたこの定理に最初の証明を与えた人物でもある。.

新しい!!: 静電容量と発散定理 · 続きを見る »

面積

面積(めんせき)とは、平面内の、あるいは曲面内の図形の大きさ、広さ、の量である。立体物の表面の面積の合計を特に表面積(ひょうめんせき)と呼ぶ。.

新しい!!: 静電容量と面積 · 続きを見る »

誘導障害

誘導障害(ゆうどうしょうがい、inductive interference)とは、送電線に流れる電流の電磁誘導や、送電線との静電誘導により、他の送電線や通信回線に電流が流れて人に危害を与えたり通信障害を引き起こしたりする現象である。.

新しい!!: 静電容量と誘導障害 · 続きを見る »

誘電体

誘電体(ゆうでんたい、dielectric)とは、導電性よりも誘電性が優位な物質である。広いバンドギャップを有し、直流電圧に対しては電気を通さない絶縁体としてふるまう。身近に見られる誘電体の例として、多くのプラスティック、セラミックス、雲母(マイカ)、油などがある。 誘電体は電子機器の絶縁材料、コンデンサの電極間挿入材料、半導体素子のゲート絶縁膜などに用いられている。また、高い誘電率を有することは光学材料として極めて重要であり、光ファイバー、レンズの光学コーティング、非線形光学素子などに用いられている。.

新しい!!: 静電容量と誘電体 · 続きを見る »

誘電率

誘電率(ゆうでんりつ、permittivity)は物質内で電荷とそれによって与えられる力との関係を示す係数である。電媒定数ともいう。各物質は固有の誘電率をもち、この値は外部から電場を与えたとき物質中の原子(あるいは分子)がどのように応答するか(誘電分極の仕方)によって定まる。.

新しい!!: 静電容量と誘電率 · 続きを見る »

質量

質量(しつりょう、massa、μᾶζα、Masse、mass)とは、物体の動かしにくさの度合いを表す量のこと。.

新しい!!: 静電容量と質量 · 続きを見る »

長さ

長さ(ながさ、length)とは、.

新しい!!: 静電容量と長さ · 続きを見る »

電場

電場(でんば)または電界(でんかい)(electric field)は、電荷に力を及ぼす空間(自由電子が存在しない空間。絶縁空間)の性質の一つ。E の文字を使って表されることが多い。おもに理学系では「電場」、工学系では「電界」ということが多い。また、電束密度と明確に区別するために「電場の強さ」ともいう。時間によって変化しない電場を静電場(せいでんば)または静電界(せいでんかい)とよぶ。また、電場の強さ(電界強度)の単位はニュートン毎クーロンなので、アンテナの実効長または実効高を掛けると、アンテナの誘起電圧 になる。.

新しい!!: 静電容量と電場 · 続きを見る »

電子部品

電子部品(でんしぶひん、electronic component)とは、電子回路の部品のことである。.

新しい!!: 静電容量と電子部品 · 続きを見る »

電圧

電圧(でんあつ、voltage)とは直観的には電気を流そうとする「圧力のようなもの」である-->。単位としては, SI単位系(MKSA単位系)ではボルト(V)が使われる。電圧を意味する記号には、EやVがよく使われる。 電圧は電位差ないしその近似によって定義される。 電気の流れに付いては「電流」を参照の事。.

新しい!!: 静電容量と電圧 · 続きを見る »

電荷

電荷(でんか、electric charge)は、素粒子が持つ性質の一つである。電気量とも呼ぶ。電荷の量を電荷量という。電荷量のことを単に電荷と呼んだり、電荷を持つ粒子のことを電荷と呼んだりすることもある。.

新しい!!: 静電容量と電荷 · 続きを見る »

電気

電気(でんき、electricity)とは、電荷の移動や相互作用によって発生するさまざまな物理現象の総称である。それには、雷、静電気といった容易に認識可能な現象も数多くあるが、電磁場や電磁誘導といったあまり日常的になじみのない概念も含まれる。 雷は最も劇的な電気現象の一つである。 電気に関する現象は古くから研究されてきたが、科学としての進歩が見られるのは17世紀および18世紀になってからである。しかし電気を実用化できたのはさらに後のことで、産業や日常生活で使われるようになったのは19世紀後半だった。その後急速な電気テクノロジーの発展により、産業や社会が大きく変化することになった。電気のエネルギー源としての並外れた多才さにより、交通機関の動力源、空気調和、照明、などほとんど無制限の用途が生まれた。商用電源は現代産業社会の根幹であり、今後も当分の間はその位置に留まると見られている。また、多様な特性から電気通信、コンピュータなどが開発され、広く普及している。.

新しい!!: 静電容量と電気 · 続きを見る »

電気伝導体

電気伝導体(でんきでんどうたい)は移動可能な電荷を含み電気を通しやすい材料、すなわち電気伝導率(導電率)の高い材料である。良導体、単に導体とも呼ぶ。 電気伝導率は、物質によってとる値の範囲が広い物性値で、金属からセラミックまで20桁ほど幅がある。一般には伝導率がグラファイト(電気伝導率 106S/m)と同等以上のものが導体、106S/m以下のものを不導体(絶縁体)、その中間の値をとるものを半導体と分類する。106S/mという電気伝導率は、1mm2の断面積で1mの導体の抵抗が1Ωになる電気の通りやすさである。 銅やアルミニウムといった金属導体では、電子が移動可能な荷電粒子となっている(電流を参照)。移動可能な正の電荷としては、格子内の原子で電子が抜けている部分という形態(正孔)や電池の電解液などにイオンの形で存在する場合がある。不導体が電流を通さないのは移動可能な電荷が少ないためである。.

新しい!!: 静電容量と電気伝導体 · 続きを見る »

電流

電流(でんりゅう、electric current電磁気学に議論を留める限りにおいては、単に と呼ぶことが多い。)は、電子に代表される荷電粒子他の荷電粒子にはイオンがある。また物質中の正孔は粒子的な性格を持つため、荷電粒子と見なすことができる。の移動に伴う電荷の移動(電気伝導)のこと、およびその物理量として、ある面を単位時間に通過する電荷の量のことである。 電線などの金属導体内を流れる電流のように、多くの場合で電流を構成している荷電粒子は電子であるが、電子の流れは電流と逆向きであり、直感に反するものとなっている。電流の向きは正の電荷が流れる向きとして定義されており、負の電荷を帯びる電子の流れる向きは電流の向きと逆になる。これは電子の詳細が知られるようになったのが19世紀の末から20世紀初頭にかけての出来事であり、導電現象の研究は18世紀の末から進んでいたためで、電流の向きの定義を逆転させることに伴う混乱を避けるために現在でも直感に反する定義が使われ続けている。 電流における電荷を担っているのは電子と陽子である。電線などの電気伝導体では電子であり、電解液ではイオン(電子が過不足した粒子)であり、プラズマでは両方である。 国際単位系 (SI) において、電流の大きさを表す単位はアンペアであり、単位記号は A であるアンペアはSI基本単位の1つである。。また、1アンペアの電流で1秒間に運ばれる電荷が1クーロンとなる。SI において電荷の単位を電流と時間の単位によって構成しているのは、電荷より電流の測定の方が容易なためである。電流は電流計を使って測定する。数式中で電流量を表すときは または で表現される。.

新しい!!: 静電容量と電流 · 続きを見る »

毎ファラド

毎ファラド(まいファラド、reciprocal farad)またはダラフ(daraf)は、エラスタンス(静電容量の逆数)の単位である。単位記号は F−1。 「毎ファラド」の名前の通り、静電容量の単位ファラドの逆数であり、1毎ファラドは1クーロンの電荷を蓄えたコンデンサの電位差が1ボルトであるときのエラスタンスと定義される。 「ダラフ」という単位名称は、1936年に電気工学者のが、ファラド(farad)を逆に綴って命名したものである。国際単位系(SI)では「ダラフ」は組立単位「毎ファラド」の固有の名称とは認められていない。.

新しい!!: 静電容量と毎ファラド · 続きを見る »

放電容量

放電容量(ほうでんようりょう)は、電池の容量である。 電池は、その使い始めには起電力として公称電圧よりやや高めの電圧(初期電圧)を出力し、放電を行うにつれて電圧は徐々に降下し公称電圧より低めになる。やがてある電圧を境にその低下の度合いが急激なものとなり、電池を電源として動作していた機器は停止に至る。このときの電圧を終止電圧(しゅうしでんあつ)といい、これに達した時点で電池は使い切られたものとみなされる。 電池の容量は、使い始めから使い終えるまでに電池から取り出し、放電した電気量である。具体的には、放電時の電流(消費電流) I と終止電圧に達するまでの時間 t の積である。量記号は W、単位としてアンペア時(アンペアじ、アンペアアワー) が用いられる。 小型の電池では、ミリアンペア時(ミリアンペアじ、ミリアンペアアワー) も用いられる。 例えば 540 とは、540 の電流を 1 、流すことができることを表している。 また、計算上は放電容量 W を消費電流 I で除したものが、その電池の使用可能時間 t であるといえる。 例えば、放電容量が850 、消費電流が325 だとすると、 ただし、実際は時間放電率(次節)を考慮する必要があるため、単純にこのような計算で使用可能時間を算出することはできない。.

新しい!!: 静電容量と放電容量 · 続きを見る »

時間

人類にとって、もともとは太陽や月の動きが時間そのものであった。 アイ・ハヌム(紀元前4世紀~紀元前1世紀の古代都市)で使われていた日時計。人々は日時計の時間で生きていた。 砂時計で砂の流れを利用して時間を計ることも行われるようになった。また砂時計は、現在というものが未来と過去の間にあることを象徴している。くびれた部分(現在)を見つめる。すると時間というのは上(未来)から流れてきて下(過去)へと流れてゆく流れ、と感じられることになる。 時間(じかん)は、出来事や変化を認識するための基礎的な概念である。芸術、哲学、自然科学、心理学などの重要なテーマとなっている。それぞれの分野で異なった定義がなされる。.

新しい!!: 静電容量と時間 · 続きを見る »

1936年

記載なし。

新しい!!: 静電容量と1936年 · 続きを見る »

ここにリダイレクトされます:

エラスタンスキャパシタンス電気容量

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »