ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
インストール
ブラウザよりも高速アクセス!
 

調和級数

索引 調和級数

数学における調和級数(ちょうわきゅうすう、harmonic series)とは発散無限級数 のことをいう。名称の「調和」(harmonics) というのは音楽や和声学における倍音の概念に由来するもので、振動する弦の倍音の波長がその弦の基本波長の 1/2, 1/3, 1/4,...

28 関係: ほとんど (数学)広義積分バロック建築ヤコブ・ベルヌーイヨハン・ベルヌーイライプニッツの公式リーマンゼータ関数レオンハルト・オイラーパラドックステイラー展開ニコル・オレームオンライン整数列大辞典オイラーの定数倍音Concrete Mathematics確率変数確率密度関数級数独立同分布発散級数複素対数函数調和平均調和数 (発散列)調和数列自然対数逆三角関数数学数学史

ほとんど (数学)

数学において、ほとんど (almost) という語は、ある厳密な意味で用いられる専門用語のひとつである。主に「測度 0 の集合を除いて」という意味であるが、それ単体で用いることはあまりなく、「ほとんど至るところで(almost everywhere)」「ほとんど全ての(almost all)」などの決まり文句でひとつの意味を形成する。.

新しい!!: 調和級数とほとんど (数学) · 続きを見る »

広義積分

解析学において、広義積分(こうぎせきぶん、improper integral)とは何らかの定積分の積分区間を動かしたときの極限である。積分区間の端点(片方または両方)は何らかの実数か正または負の無限大に近づく。.

新しい!!: 調和級数と広義積分 · 続きを見る »

バロック建築

バロック建築(Baroque Architecture)は、1590年頃から盛んになった建築様式。建築そのものだけではなく、彫刻や絵画を含めた様々な芸術活動によって空間を構成し、複雑さや多様性を示すことを特徴とする。特に内部空間の複雑な構成は、他の建築様式とは際立った特色となっている。 バロックの語源はポルトガル語のBarocco(歪んだ真珠)といわれ、元々は一部に見られるグロテスクなまでに装飾過剰で大仰な建築に対する蔑称であったが、のちに広く17・18世紀の美術・建築に見られる傾向を指す様式概念として用いられるようになった。.

新しい!!: 調和級数とバロック建築 · 続きを見る »

ヤコブ・ベルヌーイ

ヤコブ・ベルヌーイ(Jakob Bernoulli、1654年12月27日 - 1705年8月16日)は、ヤコブ、ジャック、あるいはジェームス・ベルヌーイとしても知られるスイスの数学者・科学者。ベルヌーイ家の中でも最も卓越した数学者の一人であり、ヨハン・ベルヌーイの兄である。スイスのバーゼルの生まれ。 ヤコブ・ベルヌーイは、1676年に英国に旅した折にロバート・ボイルとロバート・フックに会い、その後、科学と数学の研究に一生を捧げることになった。1682年からはバーゼル大学で教鞭をとり、1687年には同大学の数学の教授に就任する。 彼は、ゴットフリート・ライプニッツと交流をもちライプニッツから微積分を学び、弟のヨハンとも共同研究を行う。 彼の初期の業績である超越曲線(1696)とisoperimetry (1700, 1701)はこの共同作業がもたらした成果である。対数螺旋の伸開線および縮閉線は自分自身に一致することを示した。 Ars Conjectandi, Opus Posthumum (推測法、1713)は、彼の確率論の偉大な貢献である。ベルヌーイ試行とベルヌーイ数はこの著作から、彼の功績を記念して名づけられた。.

新しい!!: 調和級数とヤコブ・ベルヌーイ · 続きを見る »

ヨハン・ベルヌーイ

ヨハン・ベルヌーイ(Johann Bernoulli, 1667年7月27日 - 1748年1月1日)は、スイスの数学者。フランス語読みでジャン・ベルヌーイ (Jean Bernoulli) と表記されることもある。ロピタルの定理として知られる微分の平均値の定理の発見者である。.

新しい!!: 調和級数とヨハン・ベルヌーイ · 続きを見る »

ライプニッツの公式

ライプニッツの公式(ライプニッツのこうしき、Leibniz formula)とは円周率の値を求めるための公式の一つである。以下の級数で表される。 これは初項が 1 で各項が奇数の逆数である交項級数が に収束することを意味する。総和の記号を用いると以下のようになる。 この公式を名付けたのはライプニッツであるが、これはすでに15世紀のインドの数学者マーダヴァがライプニッツより300年ほど前に発見していたものである。公式の発見がマーダヴァの功績であることを示すためにマーダヴァ-ライプニッツ級数と呼ばれることもある。.

新しい!!: 調和級数とライプニッツの公式 · 続きを見る »

リーマンゼータ関数

1.

新しい!!: 調和級数とリーマンゼータ関数 · 続きを見る »

レオンハルト・オイラー

レオンハルト・オイラー(Leonhard Euler, 1707年4月15日 - 1783年9月18日)は、18世紀の数学者・天文学者(天体物理学者)。 18世紀の数学の中心となり、続く19世紀の厳密化・抽象化時代の礎を築いた 日本数学会編『岩波数学辞典 第4版』、岩波書店、2007年、項目「オイラー」より。ISBN 978-4-00-080309-0 C3541 。スイスのバーゼルに生まれ、現在のロシアのサンクトペテルブルクにて死去した。.

新しい!!: 調和級数とレオンハルト・オイラー · 続きを見る »

パラドックス

パラドックス()とは、正しそうに見える前提と、妥当に見える推論から、受け入れがたい結論が得られる事を指す言葉である。逆説、背理、逆理とも言われる。.

新しい!!: 調和級数とパラドックス · 続きを見る »

テイラー展開

数学において、テイラー級数 (Taylor series) は関数のある一点での導関数たちの値から計算される項の無限和として関数を表したものである。そのような級数を得ることをテイラー展開という。 テイラー級数の概念はスコットランドの数学者ジェームズ・グレゴリーにより定式化され、フォーマルにはイギリスの数学者ブルック・テイラーによって1715年に導入された。0 を中心としたテイラー級数は、マクローリン級数 (Maclaurin series) とも呼ばれる。これはスコットランドの数学者コリン・マクローリンにちなんでおり、彼は18世紀にテイラー級数のこの特別な場合を積極的に活用した。 関数はそのテイラー級数の有限個の項を用いて近似することができる。テイラーの定理はそのような近似による誤差の定量的な評価を与える。テイラー級数の最初のいくつかの項として得られる多項式はと呼ばれる。関数のテイラー級数は、その関数のテイラー多項式で次数を増やした極限が存在すればその極限である。関数はそのテイラー級数がすべての点で収束するときでさえもテイラー級数に等しいとは限らない。開区間(あるいは複素平面の開円板)でテイラー級数に等しい関数はその区間上の解析関数と呼ばれる。.

新しい!!: 調和級数とテイラー展開 · 続きを見る »

ニコル・オレーム

レームを描いた細密画(フランス国立図書館) ニコル・オレーム(Nicole Oresme または Nicolas d'Oresme 、1323年頃 - 1382年7月11日)は、14世紀フランスの最も優れた哲学者のひとりであり、その活動範囲は広くあらゆる分野に及んだ。貨幣に関する著書、数学、天文学に関する多くの著書がある。アリストテレスの著書をフランス語に訳したことでも知られる。天文学の分野では『天体・地体論』の中で、アリストテレスらの、地動説へのさまざまな反論に対して反証をあげて、地動説を否定することができないことを示した。それにもかかわらず地動説も天動説も明証的ではないので、自らは天動説を信じるという立場をとった。 ノルマンディー地方のアルマーニュ(現フルーリィ=スュル=オルヌ Fleury-sur-Orne)村に生まれた。パリ大学のナヴァール学寮で学んだ。スコラ学派のジャン・ビュリダンやザクセンのアルベルト(アルベルトゥス・デ・サクソニア)らと学んだ。パリで神学を学び、学識が高いという評判は、フランス王家の注目を得て、後のフランス王シャルル5世の知遇を得た。シャルル5世の側近として仕え、その貨幣改革に理論的裏付けを与えた。1361年にルーアンの司教代理となり、1377年にノルマンディーのリジューの司教になった。.

新しい!!: 調和級数とニコル・オレーム · 続きを見る »

オンライン整数列大辞典

ンライン整数列大辞典(オンラインせいすうれつだいじてん、On-Line Encyclopedia of Integer Sequences, 以下 OEIS)は、無料で利用可能な整数列(各項が整数である数列)のオンラインデータベースである。 2018年3月時点で30万を超える整数列の情報が収められており、この種のデータベースとしては最大のものである。英単語や数列の一部分を入力することにより検索ができる。各々の項目は数列の名前に始まり、由来、参考文献、公式、キーワードなどの情報を含む。その他、数列を一定の規則で変換した音楽を聞くことができるといった遊び心もあり、数学の専門家から数学パズル愛好者まで幅広い利用者の興味を集めている。 コンテンツは基本的に全て英語である(各言語版も用意されているが、一部のごく簡単なメッセージが翻訳されているに過ぎない)。.

新しい!!: 調和級数とオンライン整数列大辞典 · 続きを見る »

オイラーの定数

イラーの定数(オイラーのていすう、)は、数学定数の1つで、以下のように定義される。 オイラー・マスケローニ定数、オイラーの とも呼ぶ。ちなみに、オイラーはこの定数を表わすのに記号 を用いた。 を用いたのはである。 この値は、およそ0.57721 56649 01532 86060 65120 90082 40243 10421 59335 93992 35988 05767 23488 48677 26777 66467 09369 47063 29174 67495...である。 オイラーの定数は超越数であろうと予想されているが、無理数であるかどうかさえ分かっていない。.

新しい!!: 調和級数とオイラーの定数 · 続きを見る »

倍音

倍音 正弦波 倍音(ばいおん、、、、、)とは、楽音の音高とされる周波数に対し、2以上の整数倍の周波数を持つ音の成分。1倍の音、すなわち楽音の音高とされる成分を基音と呼ぶ。 弦楽器や管楽器などの音を正弦波(サインウェーブ)成分の集合に分解すると、元の音と同じ高さの波の他に、その倍音が多数(理論的には無限個)現れる。 ただし、現実の音源の倍音は必ずしも厳密な整数倍ではなく、倍音ごとに高めであったり低めであったりするのが普通で、揺らいでいることも多い。逆に、簡易な電子楽器の音のように完全に整数倍の成分だけの音は人工的な響きに感じられる。.

新しい!!: 調和級数と倍音 · 続きを見る »

Concrete Mathematics

Concrete Mathematics: A Foundation for Computer Science(邦題:コンピュータの数学)は、、ドナルド・クヌース、による、計算機科学の分野で幅広く使用されている教科書である。.

新しい!!: 調和級数とConcrete Mathematics · 続きを見る »

確率変数

率変数(かくりつへんすう、random variable, aleatory variable, stochastic variable)とは、確率論ならびに統計学において、ランダムな実験により得られ得る全ての結果を指す変数である。 数学で言う変数は関数により一義的に決まるのに対し、確率変数は確率に従って定義域内の様々な値を取ることができる。.

新しい!!: 調和級数と確率変数 · 続きを見る »

確率密度関数

率論において、確率密度関数(かくりつみつどかんすう、probability density function、PDF)とは連続確率変数がある値をとるという事象の相対尤度を記述する関数である。確率変数がある範囲の値をとる確率を、その範囲にわたって確率密度関数を積分することにより得ることができるよう定義される。例えば単変数の確率分布を平面上のグラフに表現して、x軸に“ある値”を、y軸に“相対尤度”を採った場合、求めたい範囲(x値)の下限値と上限値での垂直線と、変数グラフ曲線とy.

新しい!!: 調和級数と確率密度関数 · 続きを見る »

級数

数学における級数 (きゅうすう、series) とは、ひと口に言えば数や関数など互いに足すことのできる数学的対象の列について考えられる無限項の和のことである。ただし「無限の項の総和」が何を表しているのかということはしばしば解析学の言葉を用いて様々な場合に意味を与える(#級数の収束性の節を参照)ことができるが、そのようなことができない「発散する級数」もあれば、級数自体を新たな形式的対象としてとらえることもある。小さくなっていく実数を項とする級数の収束性については様々な判定条件が与えられている。 級数を表す記法として、和記号 を用いた表現 や三点リーダ を用いた表現 などがある。 有限個の項以外は とすることで有限個の対象の和を表すこともでき、無限項の和であることを特に強調する場合には無限級数とも言う。無限の項の和の形に表された級数が何を表しているかということは一見必ずしも明らかではないため、何らかの意味付けを与えなければならない。最もよく採用される理解の方法は、有限個の項の和が収束する先を無限級数の値とすることである。例えば、 より となる。このほかに、解析接続などの手法により、みかけ上発散している級数に対して のような等式が意味付けされることもある。.

新しい!!: 調和級数と級数 · 続きを見る »

独立同分布

率論と統計において、確率変数の列やその他の系が独立同分布(どくりつどうぶんぷ)である(independent and identically distributed; IID)とは、それぞれの確率変数が他の確率変数と同じ確率分布を持ち、かつ、それぞれ互いに独立している場合をいう。独立同一分布ともいい、i.i.d., iidとも略記される。「独立同分布」という確率分布があるわけではない。 IIDという注記は統計において特に一般的であり、推計統計学の目的のために、しばしば標本中の観測値が効果的にIIDであると仮定される。観測値がIIDであるという前提(または要件)により、多くの統計的方法の基礎となる数学が単純化される傾向がある(およびを参照)。しかし、の実際の応用においては、この仮定が現実的である場合とそうでない場合がある。与えられたデータの集合上でこの仮定がどれほど現実的であるかをテストするために、を書いたりをすることで、自己相関を計算することができる。の一般化はしばしば十分であり、より容易に満たされる。 この仮定は、有限の分散を有するIIDな変数の和(または平均)の確率分布が正規分布に近づくという中心極限定理の古典的な形式において重要である。 IIDは確率変数の列を参照することに注意が必要である。独立同分布とは、列内の要素が、その要素の前の確率変数とは独立していることを意味する。このように、IIDの列はマルコフ過程とは異なる。マルコフ過程では、n 番目の確率変数の確率分布は、列内の前の確率変数の関数である(1次マルコフ過程の場合)。IIDの列は、標本空間またはイベント空間の全ての要素の確率が同じでなければならないということを意味しない。例えば、積み重ねられたサイコロを繰返し投げた場合、結果が偏っているにもかかわらず、IIDである列が生成される。.

新しい!!: 調和級数と独立同分布 · 続きを見る »

発散級数

数学において発散級数(はっさんきゅうすう、divergent series)とは、収束しない級数である、つまり、部分和の成す無限列が有限な極限を持たない級数である。 級数が収束するならば、級数の各項の成す数列は必ず 0 に収束する。したがって、0 に収束しないような数列を項に持つ級数はいずれも発散する。しかし、級数の収束性はそれよりも強い条件で、級数の項が 0 に収束するからといって必ずしもその級数自身は収束しない。最も簡単な反例として、調和級数 が挙げられる。調和級数の発散性は、中世の数学者ニコル・オレームによって示された。 数学の特別な文脈では、部分和の列が発散するようなある種の列について、その和として意味のある値を割り当てることができる。総和法 (summability method, summation method) とは、級数の部分和の列全体の成す集合から「和の値」の集合への部分写像である。例えば、チェザロ総和法ではグランディの発散級数 に 1/2 を値として割り当てる。チェザロ総和法は平均化法 (averaging method) の一種で、部分和の列の算術平均をとることに基づいている。他の方法としては、関連する級数の解析接続として和を定める方法などがある。物理学では、非常に多種多様な総和法が用いられる(詳細はの項を参照)。.

新しい!!: 調和級数と発散級数 · 続きを見る »

複素対数函数

複素解析における複素対数函数(ふくそたいすうかんすう、complex logarithm)は、実自然対数函数が実自然指数函数の逆函数であるのと同様の意味において、複素指数函数の逆「函数」である。すなわち、複素数 の対数 とは を満たす複素数を言い、そのような を や などと書く。任意の非零複素数 は無限個の対数を持つから、そのような表記が紛れのない意味を為すように気を付けねばならない。 極形式を用いて と書くならば、 は の対数の一つを与えるが、これに の任意の整数倍を加えたもので の対数はすべて尽くされる。.

新しい!!: 調和級数と複素対数函数 · 続きを見る »

調和平均

数学において、調和平均(ちょうわへいきん、harmonic mean, subcontrary mean)はいくつかの種類がある平均のうちの1つである。典型的には、率の平均が望まれているような状況で調和平均が適切である。 正の実数について、調和平均は逆数の算術平均の逆数として定義される。簡単な例として、3つの数,, の調和平均は次のように計算できる:.

新しい!!: 調和級数と調和平均 · 続きを見る »

調和数 (発散列)

数学において、n-番目の調和数(ちょうわすう、harmonic number)は 1 から n までの自然数の逆数和 である。これはまた、1 から n までの自然数の調和平均の逆数の n-倍に等しい。 調和数は遥か昔から研究され、数論の各分野において重要である。調和数の極限は、調和級数と呼ばれ(しばしば調和数もひっくるめて一口に調和級数と呼ぶこともある)、リーマンゼータ函数と近しい関係にあり、また種々の特殊函数のさまざまな表示に現れる。 十分大きな数の標本について、その出現頻度がジップの法則に従って分布するとき、全体の中で n-番目の頻度で現れる標本の総頻度は n-番目の調和数である。このことは長い尻尾およびの驚くべき帰結の一種を導く。.

新しい!!: 調和級数と調和数 (発散列) · 続きを見る »

調和数列

調和数列(ちょうわすうれつ、harmonic sequence または harmonic progression)とは、各項の逆数を取ると等差数列となる数列である。ピタゴラス音律では、ドの弦の長さを とすると、ソは 、1オクターブ高いドは の長さになる。各項の逆数はそれぞれ,, となり、公差が の等差数列となる。よって、 は調和数列である。.

新しい!!: 調和級数と調和数列 · 続きを見る »

自然対数

実解析において実数の自然対数(しぜんたいすう、natural logarithm)は、超越的無理数であるネイピアの定数 を底とする対数を言う。 の自然対数を や、より一般に あるいは単に(底を暗に伏せて) などと書く。 通常の函数の記法に則って引数を指示する丸括弧を明示的に付けて、 や などのように書いてもよい 定義により、 の自然対数とは の肩にそれを載せた冪が 自身に一致するような冪指数のことに他ならない。例えば、 となることは となることを理由とする。特に の自然対数は であり、 の自然対数は である。 自然対数は、任意の正数 に対して 逆数函数 の から までの間のグラフの下にある面積( と の成立を意味する。 他の任意の対数がそうであるように、自然対数は なる意味で乗法を加法へ写す。これにより自然対数函数は正の実数の乗法群 から実数の加法群 への写像 として 群の準同型になる。 以外にも、任意の正数 に対して、それを底とする対数を定義することができるが、そのような対数は自然対数の定数倍として得ることができる(例えば二進対数は自然対数の 倍である)し、通常はそうして自然対数から定義される。対数は未知の量がほかの適当な量の冪と見なされる問題を解く際に有用で、例えば指数函数的減衰問題における減衰定数としての半減期を求めるときなどに利用できる。このように対数は、数学や自然科学の多くの分野において重要であり、また金融経済において複利を含む問題にも利用できる。 リンデマン–ヴァイアシュトラスの定理により、 でない任意の(正の)代数的数に対してその自然対数は超越数となる。.

新しい!!: 調和級数と自然対数 · 続きを見る »

逆三角関数

数学において、逆三角関数(ぎゃくさんかくかんすう、inverse trigonometric function、時折 )は(関数の定義域を適切に制限した)三角関数の逆関数である。具体的には、それらは正弦 、余弦 、正接 、余接 、正割 、余割 関数の逆関数である。それらは角度の三角比の任意から角度を得るために使われる。逆三角関数は工学、航法、物理学、幾何学において広く使われる。.

新しい!!: 調和級数と逆三角関数 · 続きを見る »

数学

数学(すうがく、μαθηματικά, mathematica, math)は、量(数)、構造、空間、変化について研究する学問である。数学の範囲と定義については、数学者や哲学者の間で様々な見解がある。.

新しい!!: 調和級数と数学 · 続きを見る »

数学史

数学史(すうがくし、英語:history of mathematics)とは、数学の歴史のこと。第一には、数学上の発見の起源についての研究であり、副次的な興味として、過去の数学においてどのような手法が一般的であったかや、どのような記号が使われたかなども調べられている。.

新しい!!: 調和級数と数学史 · 続きを見る »

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »