ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
無料
ブラウザよりも高速アクセス!
 

病原体

索引 病原体

病原体(びょうげんたい)とは、病気を引き起こす微生物などを指す。ウイルスのようなものも含む。病原体によって起こされる病気のことを感染症という。.

115 関係: 培養原生生物くしゃみ博物学大仏天然痘天敵害獣害虫家禽コレラ宿主寄生寄生虫下痢下水道予防接種伝染病微生物志賀潔化学物質北里柴三郎ペニシリンペストペスト菌マラリアマックス・フォン・ペッテンコーファーヤーコプ・ヘンレヨーロッパルイ・パスツールロベルト・コッホワクチンプリオンヒポクラテスフランスドイツアレルギーアレクサンダー・フレミングアントニ・ファン・レーウェンフックアオカビインフルエンザインフルエンザウイルスイタリア語ウイルスウイロイドエミール・アドルフ・フォン・ベーリングエボラウイルス属エドワード・ジェンナーカイコグラム陽性菌コレラ...コレラ菌コロニーコッホの原則ジャガイモジョゼフ・リスタージローラモ・フラカストロジフテリアストレプトマイシンゼラチン免疫系共生動物回虫破傷風種痘紀元前4世紀線形動物真正細菌瘴気結核結核菌病原性病気炭疽症炭疽菌生物生物兵器生活史狂犬病発酵菌類顕微鏡養蚕業脱水 (医療)自己実験自然災害自然発生説腐敗腺ペスト抗生物質抗血清捕食捕食寄生核酸梅毒毒素消毒昆虫日和見感染放線菌感染感染経路感染症感染症の予防及び感染症の患者に対する医療に関する法律敗血症手術14世紀1546年16世紀17世紀1876年1882年1892年18世紀19世紀 インデックスを展開 (65 もっと) »

培養

炭疽菌の培養 培養(ばいよう、culture)とは、微生物あるいは多細胞生物の細胞や組織の一部を人工的な環境下で育てることである。多細胞生物を個体単位で育てる場合は飼育や栽培として区別される。本稿では主に微生物の培養を扱う。組織の培養に関しては組織培養を参照。.

新しい!!: 病原体と培養 · 続きを見る »

原生生物

原生生物(げんせいせいぶつ, Protist)とは、生物の分類の一つ。真核生物のうち、菌界にも植物界にも動物界にも属さない生物の総称である。もともとは、真核で単細胞の生物、および、多細胞でも組織化の程度の低い生物をまとめるグループとして考えられたものである。いくつかの分類体系の中に認められているが、その場合も単系統とは考えておらず、現在では認めないことが多い。.

新しい!!: 病原体と原生生物 · 続きを見る »

くしゃみ

くしゃみ(嚔、sneeze)とは、一回ないし数回けいれん状の吸気を行った後に強い呼気をすること。.

新しい!!: 病原体とくしゃみ · 続きを見る »

博物学

博物学(はくぶつがく、Natural history, 場合によっては直訳的に:自然史)は、自然に存在するものについて研究する学問。広義には自然科学のすべて。狭義には動物・植物・鉱物(岩石)など(博物学における「界」は動物界・植物界・鉱物界の「3界」である)、自然物についての収集および分類の学問。英語の"Natural history" の訳語として明治期に作られた。東洋では本草学がそれにあたる。.

新しい!!: 病原体と博物学 · 続きを見る »

大仏

大仏(だいぶつ)とは、大きな仏像を指す通称。中国などアジアの仏教圏では、天然の岩壁を彫刻した磨崖仏などが古くから造られてきた。日本においては、奈良時代に聖武天皇が、国家の安寧と民の幸福を祈願して東大寺に奈良の大仏(東大寺大仏)を造立したのを嚆矢とする。以降、現代に至るまで、大きな功徳を求めた願主によって各地に大きな仏像が造られてきた。 釈迦の背丈が1丈6尺あったという伝説から、その高さで造られた仏像を丈六仏(じょうろくぶつ)という。背丈を基準としているため坐像の場合は、約半分の大きさになる。一般的には「丈六仏」より大きい仏像を「大仏」というが、その定義より小さくても「大仏」と称するものもある。 また、大仏を安置する仏堂を大仏殿(だいぶつでん)と呼ぶことがあり、東大寺の大仏殿(金堂)が有名である。.

新しい!!: 病原体と大仏 · 続きを見る »

天然痘

天然痘(てんねんとう、smallpox)は、天然痘ウイルス(Variola virus)を病原体とする感染症の一つである。疱瘡(ほうそう)、痘瘡(とうそう)ともいう。医学界では一般に痘瘡の語が用いられた。疱瘡の語は平安時代、痘瘡の語は室町時代、天然痘の語は1830年の大村藩の医師の文書が初出である。非常に強い感染力を持ち、全身に膿疱を生ずる。致死率が平均で約20%から50%と非常に高い。仮に治癒しても瘢痕(一般的にあばたと呼ぶ)を残す。天然痘は世界で初めて撲滅に成功した感染症である。1805年にはナポレオンが、全軍に種痘を命じた。以降は羊毛の流通に乗って発疹チフスが猛威をふるった。.

新しい!!: 病原体と天然痘 · 続きを見る »

天敵

天敵(てんてき、英語:natural enemy)とは、特定生物の死亡要因となる生物種のことである。 生物学以外では、不倶戴天の敵、自分が苦手とする人という意味などで使われることがある。.

新しい!!: 病原体と天敵 · 続きを見る »

害獣

害獣(がいじゅう)とは、人間活動に害をもたらす哺乳類に属する動物一般をさす言葉である。人間の多い地域では、家畜などの飼育動物以外はほとんどがこれに含まれる可能性がある。.

新しい!!: 病原体と害獣 · 続きを見る »

害虫

蝗害をもたらすバッタの群れ 害虫(がいちゅう、)とは、人間(ヒト)や家畜・ペット・農産物・財産などにとって有害な作用をもたらす虫。主に無脊椎動物である小動物、特に昆虫類などの節足動物類をいう。駆除には殺虫剤が使われる。英語では「害虫」「害獣」「害鳥」は、いずれも「Vermin」の語で表される。害虫の一覧も参照。 役に立つものは益虫という。.

新しい!!: 病原体と害虫 · 続きを見る »

家禽コレラ

家きんコレラ(かきんコレラ、fowl cholera)とはPasteurella multocida(パスツレラ・ムルトシダ)感染を原因とする鳥類の感染症。鳥類のPasteurella multocidaによる感染症のうち70%以上の死亡率を示すものを家きんコレラとして日本の家畜伝染病予防法において法定伝染病に指定されており、対象動物はニワトリ、アヒル、ウズラ、シチメンチョウ。日本での発生はあるが、法的処置が行われたことはない。家きんの疾病でほかに法定伝染病に指定されているものはニューカッスル病、高病原性鳥インフルエンザ、家きんサルモネラ感染症である。.

新しい!!: 病原体と家禽コレラ · 続きを見る »

宿主

宿主(しゅくしゅ、英語:host)あるいは寄主(きしゅ)とは、寄生虫や菌類等が寄生、又は共生する相手の生物。口語では「やどぬし」と訓読されるが、学術用語としては「しゅくしゅ」読みが正式である。.

新しい!!: 病原体と宿主 · 続きを見る »

寄生

寄生(きせい、Parasitism)とは、共生の一種であり、ある生物が他の生物から栄養やサービスを持続的かつ一方的に収奪する場合を指す言葉である。収奪される側は宿主と呼ばれる。 また、一般用語として「他人の利益に依存するだけで、自分は何もしない存在」や「排除が困難な厄介者」などを指す意味で使われることがある。 「パラサイト・シングル」や経済学上における「寄生地主制」などは前者の例であり、後者の例としては電子回路における「寄生ダイオード」や「寄生容量」といった言葉がある。.

新しい!!: 病原体と寄生 · 続きを見る »

寄生虫

寄生虫(きせいちゅう)とは、寄生生物のうち動物に分類されるものを指す。寄生動物とも。 植物における寄生生物は寄生植物と呼ばれる。 寄生の部位によって、体表面に寄生するものを外部寄生虫、体内に寄生するものを内部寄生虫という。寄生虫と言ったときは、おもに内部寄生虫のことを意味することが多いが、外部寄生虫のダニなどを含めることがある。カ・ブユなど一時的に付着するだけの吸血性昆虫は寄生とは言わないのが普通だが、寄生虫学では寄生虫に含めることがある。なお、社会寄生や労働寄生のものは語感的には含めないようである。 寄生虫に寄生される生物を宿主(または寄主)と呼ぶ。また、寄生バチや寄生バエのような寄主を食い尽くす生物を捕食寄生者と呼ぶ。.

新しい!!: 病原体と寄生虫 · 続きを見る »

下痢

下痢(げり、diarrhea)は、健康時の便と比較して、非常に緩いゲル(粥)状・若しくは液体状の便が出る状態である。主に消化機能の異常により、人間を含む動物が患う症状であり、その際の便は軟便(なんべん)、泥状便(でいじょうべん)、水様便(すいようべん)ともいう。東洋医学では泄瀉(泄は大便が希薄で、出たり止まったりすること。瀉は水が注ぐように一直線に下る)とも呼ばれる。世界では毎年17億人が発症し、また毎年76万人の5歳以下児童が下痢により死亡している。発展途上国では主な死因の1つとなっている。 軟骨魚類・両生類・爬虫類・鳥類および一部の原始的な哺乳類は、下痢とよく似た軟らかい便を排泄するが、それらの排泄を指して「下痢」とは呼ばない。それらの生物は、消化器官の作りが原始的であったり、全排泄(出産や産卵をも含む)を総排泄腔で行うことから、便の柔らかいことが常態である。.

新しい!!: 病原体と下痢 · 続きを見る »

下水道

明治10年代のレンガ製下水道管(横浜市) 下水道(げすいどう)は、主に都市部の雨水(うすい)および汚水(おすい)を、地下水路などで集めた後に公共用水域へ排出するための施設・設備の集合体。多くは浄化などの水処理を行う。 雨水としては、気象学における降水および、いったん降り積もった雪が気温の上昇などで融けた融雪水も含むが、いずれも路面など地表にあるものが対象で、河川水や地下水となったものは除く。 汚水としては、水洗式便所からの屎尿や、家庭における調理・洗濯で生じる生活排水と、商店やホテル・町工場から大工場にいたる事業場からの産業排水(耕作は除く)などがある。.

新しい!!: 病原体と下水道 · 続きを見る »

予防接種

予防接種(よぼうせっしゅ、vaccination)とは、病気に対する免疫をつけるために抗原物質(ワクチン)を投与(接種)すること。接種により原体の感染による発病、障害、死亡を防いだり和らげたりすることができる。さらに伝染病の抑止に最も効果的で、コストパフォーマンスの高い方法だと考えられている。 日本における予防接種法では、「疾病に対して免疫の効果を得させるため、疾病の予防に有効であることが確認されているワクチンを、人体に注射し、又は接種すること」と定義されている(予防接種法2条1項)。 接種で投与される物質は、生きているが毒性を弱めた状態の病原体(細菌・ウイルス)の場合もあれば、死んだり不活性化された状態の病原体の場合も、タンパク質などの精製物質の場合もある。 WHOによれば現在の世界では、予防接種により200-300万人の死を回避しているとしているという。しかしさらに接種率が向上すれば、加えて150万人の死を回避できるという。.

新しい!!: 病原体と予防接種 · 続きを見る »

伝染病

ペインかぜの患者で溢れる野戦病院。感染者は世界人口の3割に当たる6億人にも上った。 伝染病(でんせんびょう)は、病気を起こした個体(ヒトや動物など)から病原体が別の個体へと到達し、連鎖的に感染者数が拡大する感染症の一種である。感染経路の究明が進んでいない近代までは、ヒトや家畜など特定の動物種の集団内で同じ症状を示す者が短時間に多発した状態(集団発生・疫病)を指していたため、現在でも「集団感染」との混同が見られる。 日本において「伝染病」の語は医学分野よりも「家畜伝染病予防法」など法令において限定的に用いられており、同法では「法定伝染病」や「届出伝染病」などの語で使用されている。過去には「伝染病予防法」という法律名にも使用されていたが、1999年の感染症の予防及び感染症の患者に対する医療に関する法律(感染症法)の施行により廃止され、法文中の「伝染病」の文言は「感染症」に改められている(経過規定の条文などを除く)。同様に、旧・学校保健法の施行規則に見られた「学校伝染病」の語も2009年4月施行の学校保健安全法の施行規則で「感染症」に改められ、一般に「学校感染症」と呼ばれている。 東洋医学では賊風の証が近い概念である。.

新しい!!: 病原体と伝染病 · 続きを見る »

微生物

10,000倍程度に拡大した黄色ブドウ球菌 微生物(びせいぶつ)とは、肉眼でその存在が判別できず、顕微鏡などによって観察できる程度以下の大きさの生物を指す。微生物を研究する学問分野を微生物学と言う。.

新しい!!: 病原体と微生物 · 続きを見る »

志賀潔

志賀 潔(しが きよし、1871年2月7日(明治3年12月18日) - 1957年(昭和32年)1月25日)は、日本の医学者・細菌学者である。 赤痢菌の発見者として知られ、朝鮮総督府医院長、京城医学専門学校校長、京城帝国大学総長などを歴任した。.

新しい!!: 病原体と志賀潔 · 続きを見る »

化学物質

化学物質(かがくぶっしつ、chemical substance)とは、分野や文脈に応じて以下のような様々な意味で用いられている言葉である。.

新しい!!: 病原体と化学物質 · 続きを見る »

北里柴三郎

北里 柴三郎(きたさと しばさぶろう、1853年1月29日(嘉永5年12月20日) - 1931年(昭和6年)6月13日)は、日本の医学者・細菌学者である。従二位・勲一等旭日大綬章・男爵・医学博士。 私立伝染病研究所(現在の東京大学医科学研究所)創立者兼初代所長、土筆ヶ岡養生園(現在の北里大学北里研究所病院)創立者兼運営者、第1回ノーベル生理学・医学賞最終候補者(15名の内の1人)、私立北里研究所(現在の学校法人北里研究所)創立者兼初代所長並びに北里大学学祖、慶応義塾大学医学科(現在の慶應義塾大学医学部)創立者兼初代医学科長、慶應義塾大学病院初代病院長、日本医師会創立者兼初代会長。 「日本の細菌学の父」として知られ、ペスト菌を発見し、また破傷風の治療法を開発するなど感染症医学の発展に貢献した。門下生らはドンネル先生ドイツ語で「雷おやじ」(der Donner)の意。との愛称で畏れられ、かつ親しまれていた。.

新しい!!: 病原体と北里柴三郎 · 続きを見る »

ペニシリン

ペニシリン(penicillin、)とは、1928年にイギリスのアレクサンダー・フレミング博士によって発見された、世界初の抗生物質である。抗菌剤の分類上ではβ-ラクタム系抗生物質に分類される。博士はこの功績によりノーベル生理学・医学賞を受賞した。 発見後、医療用として実用化されるまでには10年以上の歳月を要したが、1942年にベンジルペニシリン(ペニシリンG、PCG)が単離されて実用化され、第二次世界大戦中に多くの負傷兵や戦傷者を感染症から救った。以降、種々の誘導体(ペニシリン系抗生物質)が開発され、医療現場に提供されてきた。 1980年代以降、日本国内においては主力抗菌剤の座をセファロスポリン系抗生物質やニューキノロンに明け渡した感があるが、ペニシリンの発見はこれらの抗菌剤が開発される礎を築いたものであり、しばしば「20世紀における偉大な発見」の中でも特筆すべき1つとして数え上げられる。.

新しい!!: 病原体とペニシリン · 続きを見る »

ペスト

ペスト(, )とは、ヒトの体にペスト菌(Yersinia pestis 腸内細菌科 通性嫌気性/グラム陰性/無芽胞桿菌)が感染することにより発症する伝染病である。黒死病(, )とも。.

新しい!!: 病原体とペスト · 続きを見る »

ペスト菌

ペスト菌(Yersinia pestis、エルシニア・ペスティス)は、グラム陰性の通性嫌気性細菌であり、腸内細菌科に属する。両極染色で、外見は安全ピンのような形に見え、ペストの病原体となる。ペストは人類の歴史を通じて最も致死率の高かった伝染病であり、1347年から1353年にかけて流行した際にはヨーロッパの全人口の約3分の1が死滅した(1347年10月、中央アジアからイタリアのメッシーナに上陸、1348年にはアルプス以北のヨーロッパにも到達)。 なお、微生物学上はペスト菌と仮性結核菌はほぼ同一であり、プラスミドの有無の差でしかない。このためペスト菌は仮性結核菌の亜種とされたこともあった。しかし、その医学的危険性から別種として扱う必要があり、Yersinia pestisは保存名となっている。 単独では運動性を持つが、宿主中にいるときには運動性を持たない。.

新しい!!: 病原体とペスト菌 · 続きを見る »

マラリア

マラリア(麻剌利亜、「悪い空気」という意味の古いイタリア語: mal aria 、Malaria、malaria)は、熱帯から亜熱帯に広く分布する原虫感染症。高熱や頭痛、吐き気などの症状を呈する。悪性の場合は脳マラリアによる意識障害や腎不全などを起こし死亡する。古典などで出てくる瘧(おこり)とは、大抵このマラリアを指していた。 マラリアは予防可能、治療可能な病気である。全世界ではマラリアに年間2.16億人が感染し、うち44.5万人が死亡している(2016年)。.

新しい!!: 病原体とマラリア · 続きを見る »

マックス・フォン・ペッテンコーファー

マックス・フォン・ペッテンコーファー マックス・ヨーゼフ・フォン・ペッテンコーファー(Max Josef von Pettenkofer、1818年12月3日 - 1901年2月9日)は、ドイツ(バイエルン王国)の衛生学者、化学者。姓はペッテンコーフェルとも表記される。化学的手法を用いて衛生学の発展に寄与し、ミュンヘン大学にドイツ初の衛生学講座を設立してその教授を務めた。「近代衛生学の父」「環境医学の父」「実験衛生学の父」とも呼ばれる。特に生活環境と病気発生との関係を重視して下水道整備の重要性を説き、下水道の普及と衛生行政の発展に多大な功績をおさめた。一方、病気の発生理論に関わる見解の違いから、ロベルト・コッホらと論争を行い、コレラの病因論争において、コレラ菌を自ら飲んだエピソードでも知られる。緒方正規、森林太郎(森鴎外)のドイツ留学時代の恩師であり、彼が祖となったドイツ式の近代衛生学が日本の衛生学に与えた影響も大きい。なお、鴎外の孫の名前である真樟(まくす)は、ペッテンコーファーの名前から名付けられた。.

新しい!!: 病原体とマックス・フォン・ペッテンコーファー · 続きを見る »

ヤーコプ・ヘンレ

ヤーコプ・ヘンレ フリードリヒ・グスタフ・ヤーコプ・ヘンレ(Friedrich Gustav Jacob Henle, 1809年7月19日 - 1885年5月13日)はドイツの解剖学者、病理学者、医師である。顕微鏡を使った解剖学の分野で、腎臓のヘンレのループなど多くの発見をした。疾病の微生物原因説を唱えたパイオニアである。 バイエルン州フュルトのユダヤ人商人の家に生まれた。家族とともにラインラントに移り、ボン大学とハイデルベルク大学で薬学を学んだ。1832年に博士号を得て、ヨハネス・ペーター・ミュラーの解剖学研究所の助手となった。1940年にチューリッヒ大学の解剖学と生理学の教授となった。 1844年にハイデルベルク大学の病理学の生理学の教授となり、『合理的病理学ハンドブック』(Handbuch der rationellen Pathologie) を著した。1865年にクロム酸カリウム溶液による組織の染色法を開発し、組織学の発展に貢献した。 ジローラモ・フラカストロとアゴスティーノ・バッシーの研究をうけて、病気の微生物原因説のパイオニアの一人で、病気の原因となる病原体を発見したと証明するための必要な条件を定めた。これはロベルト・コッホによって発展させられコッホの公準となった。.

新しい!!: 病原体とヤーコプ・ヘンレ · 続きを見る »

ヨーロッパ

ヨーロッパ日本語の「ヨーロッパ」の直接の原語は、『広辞苑』第5版「ヨーロッパ」によるとポルトガル語・オランダ語、『デジタル大辞泉』goo辞書版「」によるとポルトガル語。(、)又は欧州は、地球上の七つの大州の一つ。漢字表記は欧羅巴。 地理的には、ユーラシア大陸北西の半島部を包括し、ウラル山脈およびコーカサス山脈の分水嶺とウラル川・カスピ海・黒海、そして黒海とエーゲ海を繋ぐボスポラス海峡-マルマラ海-ダーダネルス海峡が、アジアと区分される東の境界となる増田 (1967)、pp.38–39、Ⅲ.地理的にみたヨーロッパの構造 ヨーロッパの地理的範囲 "Europe" (pp. 68-9); "Asia" (pp. 90-1): "A commonly accepted division between Asia and Europe...

新しい!!: 病原体とヨーロッパ · 続きを見る »

ルイ・パスツール

ルイ・パスツール(Louis Pasteur, 1822年12月27日 - 1895年9月28日、パストゥールとも)は、フランスの生化学者、細菌学者。「科学には国境はないが、科学者には祖国がある」という言葉でも知られる。王立協会外国人会員。 ロベルト・コッホとともに、「近代細菌学の開祖」とされる。 分子の光学異性体を発見。牛乳、ワイン、ビールの腐敗を防ぐ低温での殺菌法(パスチャライゼーション・低温殺菌法とも)を開発。またワクチンの予防接種という方法を開発し、狂犬病ワクチン、ニワトリコレラワクチンを発明している。.

新しい!!: 病原体とルイ・パスツール · 続きを見る »

ロベルト・コッホ

ベルト・コッホ、またはハインリヒ・ヘルマン・ロベルト・コッホ(Heinrich Hermann Robert Koch、1843年12月11日 - 1910年5月27日)は、ドイツの医師、細菌学者。ルイ・パスツールとともに、「近代細菌学の開祖」とされる。 炭疽菌、結核菌、コレラ菌の発見者である。純粋培養や染色の方法を改善し、細菌培養法の基礎を確立した。寒天培地やペトリ皿(シャーレ)は彼の研究室で発明され、その後今日に至るまで使い続けられている。 また感染症の病原体を証明するための基本指針となるコッホの原則を提唱し、感染症研究の開祖として医学の発展に貢献した。.

新しい!!: 病原体とロベルト・コッホ · 続きを見る »

ワクチン

ワクチン(Vakzin、vaccine)は、感染症の予防に用いる医薬品。病原体から作られた無毒化あるいは弱毒カ化された抗原を投与することで、体内に病原体に対する抗体産生を促し、感染症に対する免疫を獲得する。 18世紀末、一度罹患したら再び罹患しない事実からエドワード・ジェンナーが天然痘のワクチンを発見し、その後にルイ・パスツールがこれを弱毒化した。弱毒生ワクチン、あるいは生ワクチンと呼ばれる。これに対して、不活化ワクチンは抗原のみを培養したもので、複数回の摂取が必要となったりする。.

新しい!!: 病原体とワクチン · 続きを見る »

プリオン

プリオン(; IPA: )は、タンパク質から成る感染性因子である。一般的用法としてプリオンとは理論上の感染単位を意味する。科学的表記でPrPCは多くの組織に認められる内因型のプリオンタンパク質(PrP)を指し、他方、PrPSCは神経変性を惹起するアミロイド斑形成の原因となるミスフォールド型のPrPを指す。プリオン(prion)の語は、「タンパク質性の」を意味するproteinaceousと「感染性の」を意味するinfectious の頭文字に加えて、ビリオン(virion)との類似から派生して造られた合成語である。 現時点でこの性質を有する既知因子は、いずれもタンパク質の誤って折りたたまれた(ミスフォールドした)状態を伝達することにより増殖する。ただし、タンパク質そのものが自己複製することはなく、この過程は宿主生物内のポリペプチドの存在に依存している。プリオンタンパク質のミスフォールド型は、ウシのウシ海綿状脳症(BSE、狂牛病)や、ヒトのクロイツフェルト=ヤコブ病(CJD)といった種々の哺乳類に見られる多くの疾患に関与することが判っている。既知の全プリオン病は脳などの神経組織の構造に影響を及ぼし、現時点でこれらは全て治療法未発見の致死的疾患である。 プリオンは仮説によれば、異常にリフォールドしたタンパク質の構造が、正常型構造を有するタンパク質分子を自身と同じ異常型構造に変換する能力を持つことで伝播、感染するとされる。既知の全プリオンはアミロイドと呼ばれる構造体の形成を誘導する。アミロイドとは、タンパク質が重合することで密集したβシートから成る凝集体である。この変形構造は極めて安定で、感染組織に蓄積することにより組織損傷や細胞死を引き起こす。プリオンはこの安定性により化学的変性剤や物理的変性剤による変性処理に耐性を持ち、除去や封じ込めは難しい。 プリオンの様式を示すタンパク質は菌類でもいくつか発見されているが、哺乳類プリオンの理解を助けるモデルとなることから、その重要性が注目されている。しかし、菌類のプリオンは宿主内で疾患につながるとは考えられておらず、むしろタンパク質による一種の遺伝的形質を介して進化の過程で有利に働くのではないかと言われている。.

新しい!!: 病原体とプリオン · 続きを見る »

ヒポクラテス

ヒポクラテス(ヒッポクラテース、古代ギリシア語: Ἱπποκράτης、Hippocrates, 紀元前460年ごろ - 紀元前370年ごろ)は古代ギリシアの医者。 エーゲ海に面したイオニア地方南端のコス島に生まれ、医学を学びギリシア各地を遍歴したと言い伝えられるが、その生涯について詳しいことは分かっていない。ヒポクラテスの名を冠した『ヒポクラテス全集』が今日まで伝わるが、その編纂はヒポクラテスの死後100年以上経ってからとされ、内容もヒポクラテス派(コス派)の他、ライバル関係であったクニドス派の著作や、ヒポクラテスの以後の著作も多く含まれると見られている。 ヒポクラテス(或いはヒポクラテス派)の最も重要な功績のひとつに、医学を原始的な迷信や呪術から切り離し、臨床と観察を重んじる経験科学へと発展させたことが挙げられる。さらに医師の倫理性と客観性について『誓い』と題した文章が全集に収められ、現在でも『ヒポクラテスの誓い』として受け継がれている。 人生は短く、術のみちは長い "ὁ βίος βραχύς, ἡ δὲ τέχνη μακρή." と言う有名な言葉もヒポクラテスのものとされており、これは「ars longa, vita brevis アルスロンガ、ウィータブレウィス」というラテン語訳で現代でも広く知られている。病気は4種類の体液の混合に変調が生じた時に起こるという四体液説を唱えた。また人間のおかれた環境(自然環境、政治的環境)が健康に及ぼす影響についても先駆的な著作をのこしている。 これらヒポクラテスの功績は古代ローマの医学者ガレノスを経て後の西洋医学に大きな影響を与えたことから、ヒポクラテスは「医学の父」、「医聖」、「疫学の祖」などと呼ばれる。.

新しい!!: 病原体とヒポクラテス · 続きを見る »

フランス

フランス共和国(フランスきょうわこく、République française)、通称フランス(France)は、西ヨーロッパの領土並びに複数の海外地域および領土から成る単一主権国家である。フランス・メトロポリテーヌ(本土)は地中海からイギリス海峡および北海へ、ライン川から大西洋へと広がる。 2、人口は6,6600000人である。-->.

新しい!!: 病原体とフランス · 続きを見る »

ドイツ

ドイツ連邦共和国(ドイツれんぽうきょうわこく、Bundesrepublik Deutschland)、通称ドイツ(Deutschland)は、ヨーロッパ中西部に位置する連邦制共和国である。もともと「ドイツ連邦共和国」という国は西欧に分類されているが、東ドイツ(ドイツ民主共和国)の民主化と東西ドイツの統一により、「中欧」または「中西欧」として再び分類されるようになっている。.

新しい!!: 病原体とドイツ · 続きを見る »

アレルギー

アレルギー()とは、免疫反応が特定の抗原に対して過剰に起こることをいう。免疫反応は、外来の異物(抗原)を排除するために働く、生体にとって不可欠な生理機能である。語源はギリシア語の allos(変わる)と ergon(力、反応)を組み合わせた造語で、疫を免れるはずの免疫反応が有害な反応に変わるという意味である。 アレルギーが起こる原因は解明されていないが、生活環境のほか、抗原に対する過剰な曝露、遺伝などが原因ではないかと考えられている。なお、アレルギーを引き起こす環境由来抗原を特にアレルゲンと呼ぶ。ハウスダスト、ダニ、花粉、米、小麦、酵母、ゼラチンなど、実に様々なものがアレルゲンとなる。最近では先進国で患者が急増しており、日本における診療科目・標榜科のひとつとしてアレルギーを専門とするアレルギー科がある。 喘息をはじめとするアレルギーの治療に関して、欧米の医師と日本の医師との認識の違いの大きさを指摘し、改善可能な点が多々残されていると主張する医師もいる。.

新しい!!: 病原体とアレルギー · 続きを見る »

アレクサンダー・フレミング

記念切手 サー・アレクサンダー・フレミング(Sir Alexander Fleming, 1881年8月6日 - 1955年3月11日)はイギリスの細菌学者である。抗菌物質リゾチーム(lysozyme)と、アオカビ(Penicillium notatum)から見出した世界初の抗生物質、ペニシリンの発見者として知られている。 クライズデール銀行が発行する5ポンド紙幣に肖像が使用されている。.

新しい!!: 病原体とアレクサンダー・フレミング · 続きを見る »

アントニ・ファン・レーウェンフック

アントーニ・ファン・レーウェンフック(レーベンフック、Antonie van Leeuwenhoek 、1632年10月24日 - 1723年8月26日)はオランダの商人、科学者。歴史上はじめて顕微鏡を使って微生物を観察し、「微生物学の父」とも称せられる。.

新しい!!: 病原体とアントニ・ファン・レーウェンフック · 続きを見る »

アオカビ

アオカビ(Penicillium)はアオカビ属(ペニシリウム属)に属するカビの総称で、もっとも普遍的に見られる不完全菌の一つである。胞子の色が肉眼で青みを帯びた水色であることからその名がある。ただし、白や緑がかった色のものも見られ、必ずしもすべてのアオカビ属(Penicillium属)のカビが青いわけではない。 顕微鏡で観察すると、筆状体(ひつじょうたい、penicillus)と呼ばれる筆のような形の構造が見られ、その先端に胞子がついているのが判る。これがこのカビの学名の由来になっている。世界で初めての抗生物質であるペニシリンが、この種のカビから発見されたことは有名である。また、ゴルゴンゾーラ、ロックフォールなどの代表的なチーズの製造に用いられるカビもアオカビの仲間である。.

新しい!!: 病原体とアオカビ · 続きを見る »

インフルエンザ

インフルエンザ()はインフルエンザウイルスによって引き起こされる急性感染症。略称としてインフル()がある。多くは上気道炎症状・呼吸器疾患を伴うことで流行性感冒(りゅうこうせいかんぼう)、詰めて流感(りゅうかん)と言われる。 季節性インフルエンザには、A型、B型、C型の3種類があり、全ての年齢層に対して感染し、世界中で繰り返し流行している。日本などの温帯では、季節性インフルエンザは冬季に毎年のように流行する。通常、11月下旬から12月上旬頃に最初の発生、12月下旬に小ピーク。学校が冬休みの間は小康状態で、翌年の1-3月頃にその数が増加しピークを迎えて4-5月には流行は収まるパターンであるが、冬季だけに流行する感染症では無く夏期にも流行する事がある。A型は平均相対湿度50%以下になると流行しやすくなると報告されている。 全世界では毎年300-500万人がインフルエンザが重症化し、25-50万人の死者を出している。先進国における死者は65歳以上人口が最も多い。また病欠・生産性低下といった社会的コストも大きい。 感染経路は咳やくしゃみなどによる飛沫感染が主と言われている。一般的には経口・経鼻で呼吸器系に感染する。飛沫核感染(空気感染)や接触感染など違った形式によるものもある。予防においては、有症状患者のマスク着用が有用であり、飛沫感染防止に特に効果的であるが、形状や機能性などによっては完全に防げない場合もある。マスクのみでは飛沫核感染や接触感染を防ぐことができないため、手洗い・マスク着用などの対策も必要である。最も感染を予防できる方法はワクチンである。抗ウイルス薬(タミフル、リレンザなど)も存在するが、ウイルスはすぐに耐性を獲得し、その効果も備蓄するほどかどうか見直されてきた。.

新しい!!: 病原体とインフルエンザ · 続きを見る »

インフルエンザウイルス

インフルエンザウイルス インフルエンザウイルス (influenzavirus, flu virus) はヒト(人間)に感染して、感染症であるインフルエンザを引き起こすウイルス。 ウイルスの分類上は「エンベロープを持つ、マイナス鎖の一本鎖RNAウイルス」として分類されるオルトミクソウイルス科に属する、A型インフルエンザウイルス (influenzavirus A) 、B型インフルエンザウイルス (- B) 、C型インフルエンザウイルス (- C) の3属を指す。ただし一般に「インフルエンザウイルス」と呼ぶ場合は、特にA型、B型のものを指し、その中でもさらにヒトに感染するものを意味する場合が多い(インフルエンザ・ワクチンはC型を対象としていない)。またヒト以外のインフルエンザウイルスは、それぞれ分離された動物の名前またはその略をつけて呼ばれるが、ヒトの場合は本項のように省略される。 本来はカモなどの水鳥を自然宿主として、その腸内に感染する弱毒性のウイルスであったものが、突然変異によってヒトの呼吸器への感染性を獲得したと考えられている。.

新しい!!: 病原体とインフルエンザウイルス · 続きを見る »

イタリア語

イタリア語(イタリアご)は、インド・ヨーロッパ語族イタリック語派に属する言語の1つで、おおよそ6千万人ほどが日常的に使用しており、そのほとんどがイタリアに住んでいる。後置修飾で、基本語順はSVO。イタリアは漢字で「伊太利亜」と表記することから、「伊太利亜語」を略記し伊語と称される。.

新しい!!: 病原体とイタリア語 · 続きを見る »

ウイルス

ウイルス()は、他の生物の細胞を利用して、自己を複製させることのできる微小な構造体で、タンパク質の殻とその内部に入っている核酸からなる。生命の最小単位である細胞をもたないので、非生物とされることもある。 ヒト免疫不全ウイルスの模式図.

新しい!!: 病原体とウイルス · 続きを見る »

ウイロイド

ウイロイド (Viroid) は塩基数が200~400程度と短い環状の一本鎖RNAのみで構成され、維管束植物に対して感染性を持つもの。分子内で塩基対を形成し、多くは生体内で棒状の構造をとると考えられる。 ウイルスは蛋白質でできた殻で覆われているがウイロイドにはそれがなく、またプラスミドのようにそのゲノム上にタンパク質をコードすることもない。複製はローリングサークルと呼ばれる様式で行われ、核内あるいは葉緑体内で複製される。この過程では、それぞれの単位がタンデムに連なった状態に複製されるが、これを切断する過程がリボザイムによって触媒されるウイロイドも知られる。 このようなことから、ウイロイドをRNA生物の生きている化石と見なし、ウイロイド様のものから生物が進化したとする説がある (reviewed in Symons 1997; Pelchat et al. 2003)。あるいはまた、RNAの切れ端が自己複製機能を有するようになったものがウイロイドであるとする説もある。 世界で最初に発見されたウイロイドは、セオドール・ディーナーによって1971年に記述されたジャガイモやせいもウイロイド (Potato spindle tuber viroid) である。.

新しい!!: 病原体とウイロイド · 続きを見る »

エミール・アドルフ・フォン・ベーリング

ミール・アドルフ・フォン・ベーリング(Emil Adolf von Behring, 1854年3月15日 - 1917年3月31日)はドイツの医学者・実業家。1901年に「ジフテリアに対する血清療法の研究」で第一回ノーベル生理学・医学賞を受賞(後述)。.

新しい!!: 病原体とエミール・アドルフ・フォン・ベーリング · 続きを見る »

エボラウイルス属

ボラウイルス属 (Ebola virus) とは、モノネガウイルス目フィロウイルス科に属するウイルスの1属。ザイールエボラウイルス (Zaire ebolavirus) を模式種とする5種を含む。エボラ出血熱の病原体である。.

新しい!!: 病原体とエボラウイルス属 · 続きを見る »

エドワード・ジェンナー

ドワード・ジェンナー(Edward Jenner、1749年5月17日 - 1823年1月26日)は、イギリスの医学者。天然痘の予防において、それまで行われていた人痘接種より安全性の高い種痘(牛痘接種)法を開発した。近代免疫学の父とも呼ばれる。.

新しい!!: 病原体とエドワード・ジェンナー · 続きを見る »

カイコ

イコ(蚕、蠶)はチョウ目(鱗翅目)・カイコガ科に属する昆虫の一種。正式和名はカイコガで、カイコは本来この幼虫の名称だが、一般的にはこの種全般をも指す。クワ(桑)を食餌とし、絹を産生して蛹(さなぎ)の繭(まゆ)を作る。有史以来養蚕の歴史と共に各国の文化と共に生きてきた昆虫。 学名(ラテン語名)は「(仮名転写の一例:ボムビークス・モリー)」。.

新しい!!: 病原体とカイコ · 続きを見る »

グラム陽性菌

ラム陽性菌(グラムようせいきん、)とは、グラム染色により紺青色あるいは紫色に染色される細菌の総称。これに対して赤色あるいは桃色を呈すものをグラム陰性菌と呼ぶ。大まかにいえば、フィルミクテス門と放線菌門がグラム陽性菌に属している。 かつてグラム陽性の真正細菌は、フィルミクテス門Firmicutesに一括してまとめられた時期がある。命名はグラム陽性菌の厚い細胞壁にちなんでおり、ラテン語のFirmisフィルミス(強固な)とcutisクティス(皮膚)の合成語であった。ここには、現在のフィルミクテス門に含まれる低GCグラム陽性細菌の他に、現在は別の門として扱われる放線菌(高GCグラム陽性細菌)やデイノコックスなども含まれていた。.

新しい!!: 病原体とグラム陽性菌 · 続きを見る »

コレラ

レラ(Cholera、虎列剌)は、コレラ菌(Vibrio cholerae)を病原体とする経口感染症の一つ。日本では「感染症の予防及び感染症の患者に対する医療に関する法律」(感染症新法)の指定感染症である(2006年(平成18年)12月8日公布の「感染症の予防及び感染症の患者に対する医療に関する法律等の一部を改正する法律」により二類感染症から三類感染症に変更)。日本ではコレラ菌のうちO1、O139血清型を原因とするものを行政的にコレラとして扱う。治療しなければ患者は数時間のうちに死亡する場合もある。 予防には、衛生改善と清潔な水へのアクセスが必要である。 経口コレラワクチンは、投与するとおよそ6か月効果が続き、またその他一部の大腸菌による下痢も予防できる 。主な治療法は経口水分補給であり、加糖加塩の液体により電解質を補充する。補充には米食ベースの選択が好まれる。児童には亜鉛サプリメントも推奨される 。重度な症例では、静脈輸液(乳酸リンゲル液など)が求められ、また抗生物質も効果がありうる 。抗生物質の感受性試験は、治療選択の支援となりえる。 全世界の患者数は毎年3-5百万人であり、年間28,800–130,000人の死者を出している。パンデミックには分類されておらず、先進国ではまれな病気である。最も影響を受けるのは児童である。コレラはアウトブレイクを起こす病気でもあるが、特定の地域では一般的な病気である。現在もリスクがある地域は、アフリカ、東南アジアである。 死亡リスクはたいてい5%以下であるが、医療アクセスに乏しい地域では50%ほどに高まる。歴史的な記録は、紀元前5世紀のサンスクリットにまで確認される。.

新しい!!: 病原体とコレラ · 続きを見る »

コレラ菌

レラ菌(コレラきん、学名 Vibrio cholerae)は、ビブリオ属に属するグラム陰性のコンマ型をした桿菌の一種水之江義充、吉田眞一「コレラ菌とビブリオ科の細菌」:『戸田新細菌学』(吉田眞一、柳雄介編)改訂33版、南山堂、2007年 pp.563-577 ISBN 978-4-525-16013-5J.J. Farmer III and J. Michael Janda "Vibrionaceae" in Bergey's manual of systematic bacteriology (George M. Garrity et al. eds.) 2nd ed.

新しい!!: 病原体とコレラ菌 · 続きを見る »

コロニー

ニー(colony).

新しい!!: 病原体とコロニー · 続きを見る »

コッホの原則

ベルト・コッホ コッホの原則(コッホのげんそく)とは、ドイツの細菌学者ロベルト・コッホがまとめた、感染症の病原体を特定する際の指針のひとつ。.

新しい!!: 病原体とコッホの原則 · 続きを見る »

ジャガイモ

花 地上部 '''ジャガイモ'''のアミノ酸スコアhttp://www.nal.usda.gov/fnic/foodcomp/search/『タンパク質・アミノ酸の必要量 WHO/FAO/UNU合同専門協議会報告』日本アミノ酸学会監訳、医歯薬出版、2009年5月。ISBN 978-4263705681 邦訳元 ''http://whqlibdoc.who.int/trs/WHO_TRS_935_eng.pdf Protein and amino acid requirements in human nutrition'', Report of a Joint WHO/FAO/UNU Expert Consultation, 2007 thumb ジャガイモ(馬鈴薯〈ばれいしょ〉、、学名:Solanum tuberosum L.)は、ナス科ナス属の多年草の植物。デンプンが多く蓄えられている地下茎が芋の一種として食用とされる。.

新しい!!: 病原体とジャガイモ · 続きを見る »

ジョゼフ・リスター

初代リスター男爵ジョゼフ・リスター(Joseph Lister, 1st Baron Lister、1827年4月5日・ロンドン - 1912年2月10日)は、イギリスの外科医。メリット勲章勲爵士(OM)、王立協会フェロー(FRS)、枢密顧問官(PC)。フェノールによる消毒法の開発者。 リスターは1860年からグラスゴー大学、1869年からエディンバラ大学で臨床外科の教授を務めた。1877年にはロンドンに戻り、キングス・カレッジ・ロンドンで臨床外科の教授に就任した。 細菌の一種であるリステリアは彼を記念して献名された。また、口腔消毒薬のリステリンも彼を記念しての商標である。ただし、彼自身はこれらには一切関わっていない。.

新しい!!: 病原体とジョゼフ・リスター · 続きを見る »

ジローラモ・フラカストロ

ーラモ・フラカストロ(Girolamo Fracastoro ラテン名:Fracastorius、1478年 - 1553年8月8日)は16世紀のイタリアの科学者である。特に伝染病のコンタギオン説(接触伝染説)を提唱したことで知られる。天文学の分野でも彗星が太陽と反対の方向に尾を引くことを著書に著し、地質学の分野では化石が生物起源であることを主張した。 ヴェローナの旧家に生まれ、パドヴァ大学に学んだ。19歳のときにはパドヴァ大学の教授に任命された。パドヴァ大学では同じ頃コペルニクスが学んでいる。当時の学者の例に従い、その研究分野は医学のみならず、天文学、地質学、数学に及んだ。 1530年の著書、『梅毒あるいはフランス病』(Syphilidis, sive Morbi Gallici)および、 1546年の著書『伝染病について』(De Contagione et Contagiosis Morbis)で伝染病の病原菌の観念を述べた。梅毒(Syphilis)やチフス(typhus)の命名者である。 天文学の分野ではピエトロ・アピアーノ(1495 - 1552)とならんで彗星が太陽と反対の方向に尾を引くことを観測したひとりで、1538年天文学の著書“Homocentrica”を著した。.

新しい!!: 病原体とジローラモ・フラカストロ · 続きを見る »

ジフテリア

フテリア (diphtheria) は、ジフテリア菌 (Corynebacterium diphtheriae) を病原体とするジフテリア毒素によって起こる上気道の粘膜感染症。 感染部位によって咽頭・扁桃ジフテリア、喉頭ジフテリア、鼻ジフテリア、 皮膚ジフテリア、 眼結膜ジフテリア、生殖器ジフテリアなどに分類できる。腎臓、脳、眼の結膜・中耳などがおかされることもあり、保菌者の咳などによって飛沫感染する。発症するのは10%程度で、他の90%には症状の出ない不顕性感染であるが、ワクチンにより予防可能で予防接種を受けていれば不顕性感染を起こさない。すべてのジフテリア菌が毒素を産生するわけではなく、ジフテリア毒素遺伝子を保有するバクテリオファージが感染した菌のみが、ジフテリア毒素を産生する。 ジフテリア菌の発見は1883年。エミール・フォン・ベーリングと北里柴三郎が血清療法を開発。その功績でベーリングは第1回ノーベル生理学・医学賞を受賞した。.

新しい!!: 病原体とジフテリア · 続きを見る »

ストレプトマイシン

トレプトマイシン(Streptomycin)は抗生物質のひとつである。最初に発見されたアミノグリコシド類であり、結核の治療に用いられた最初の抗生物質である。略してストマイともいう。放線菌の一種 Streptomyces griseus に由来する。 真正細菌(バクテリア)型リボソームのみに選択的で、それ以外の生物、例えば古細菌には効果がない。古細菌に近い祖先をもつと考えられる真核生物本体のリボソームも阻害を受けず、真正細菌のみを選択的に殺すことができる。ただし、ミトコンドリアリボソームは進化的に真正細菌に起源があり、ある程度影響を受ける。これが副作用の原因の一つになると考えられている。 なお、ストレプトマイシンは消化管からの吸収がよくないため経口では投与できず、筋肉注射を行わなければならない。 現在では、硫酸塩および誘導体のジヒドロストレプトマイシンが農薬の一種である殺菌剤として発売されている。.

新しい!!: 病原体とストレプトマイシン · 続きを見る »

ゼラチン

ラチン(gelatin)は、動物の皮膚や骨、腱などの結合組織の主成分であるコラーゲンに熱を加え、抽出したもの。タンパク質を主成分とする説が有力。.

新しい!!: 病原体とゼラチン · 続きを見る »

免疫系

免疫系(めんえきけい、immune system)とは、生体内で病原体などの非自己物質やがん細胞などの異常な細胞を認識して殺滅することにより、生体を病気から保護する多数の機構が集積した機構である。精密かつダイナミックな情報伝達を用いて、細胞、組織、器官が複雑に連係している。この機構はウイルスから寄生虫まで広い範囲の病原体を感知し、作用が正しく行われるために、生体自身の健常細胞や組織と区別しなければならない。 この困難な課題を克服して生き延びるために、病原体を認識して中和する機構が一つならず進化した。細菌のような簡単な単細胞生物でもウイルス感染を防御する酵素系をもっている。その他の基本的な免疫機構は古代の真核生物において進化し、植物、魚類、ハ虫類、昆虫に残存している。これらの機構はディフェンシンと呼ばれる抗微生物ペプチドが関与する機構であり、貪食機構であり、 補体系である。ヒトのような脊椎動物はもっと複雑な防御機構を進化させた。脊椎動物の免疫系は多数のタイプのタンパク質、細胞、器官、組織からなり、それらは互いに入り組んだダイナミックなネットワークで相互作用している。このようないっそう複雑な免疫応答の中で、ヒトの免疫系は特定の病原体に対してより効果的に認識できるよう長い間に適応してきた。この適応プロセスは適応免疫あるいは獲得免疫(あるいは後天性免疫)と呼ばれ、免疫記憶を作り出す。特定の病原体への初回応答から作られた免疫記憶は、同じ特定の病原体への2回目の遭遇に対し増強された応答をもたらす。獲得免疫のこのプロセスがワクチン接種の基礎である。 免疫系が異常を起こすと病気になる場合がある。免疫系の活動性が正常より低いと、免疫不全病が起こり感染の繰り返しや生命を脅かす感染が起こされる。免疫不全病は、重症複合免疫不全症のような遺伝病の結果であったり、レトロウイルスの感染によって起こされる後天性免疫不全症候群 (AIDS) や医薬品が原因であったりする。反対に自己免疫病は、正常組織に対しあたかも外来生物に対するように攻撃を加える、免疫系の活性亢進からもたらされる。ありふれた自己免疫病として、関節リウマチ、I型糖尿病、紅斑性狼瘡がある。免疫学は免疫系のあらゆる領域の研究をカバーし、ヒトの健康や病気に深く関係している。この分野での研究をさらに推し進めることは健康増進および病気の治療にも期待できる。.

新しい!!: 病原体と免疫系 · 続きを見る »

共生

共生(きょうせい、SymbiosisあるいはCommensal)とは、複数種の生物が相互関係を持ちながら同所的に生活する現象。共に生きること。 元の用字は共棲であるとする説もあるが、最新の研究では、共生は明治21年に三好学の論文で用いられていることが確認されており、共棲の用例より早い。確認されている範囲では、日本に初めてSymbiosisという概念を紹介した最初の研究者は三好学であるので、彼がこの訳を当てた可能性が高いともされる。日本では1922年に椎尾弁匡が仏教運動として共生運動を始め、共生が単なる生物学的な意味だけでなく、哲学的な意味を含む言葉になっていった。.

新しい!!: 病原体と共生 · 続きを見る »

動物

動物(どうぶつ、羅: Animalia、単数: Animal)とは、.

新しい!!: 病原体と動物 · 続きを見る »

回虫

回虫(カイチュウ、蛔虫とも)は、ヒトをはじめ多くの哺乳類の、主として小腸に寄生する動物で、線虫に属する寄生虫である(「分類」を参照)。狭義には、ヒトに寄生するヒトカイチュウ Ascaris lumbricoides を指す。ヒトに最もありふれた寄生虫であり、世界で約十億人が感染している。本項では主としてヒトカイチュウについて記載する。.

新しい!!: 病原体と回虫 · 続きを見る »

破傷風

傷風(はしょうふう、Tetanus)は、破傷風菌を病原体とする人獣共通感染症の一つ。.

新しい!!: 病原体と破傷風 · 続きを見る »

種痘

接種箇所に終生残る大きな瘢痕。1948年以降、日本では右肩付近に接種するのが一般的だったが、このように、上腕の肘に近い部位に接種された例もごく稀に見かける(1975年接種の跡)。日本は1974年度生まれ迄が種痘を受けた世代である。 種痘(しゅとう)とは、天然痘の予防接種のことである。ワクチンをY字型の器具(二又針)に付着させて人の上腕部に刺し、傷を付けて皮内に接種する。現在天然痘ウイルスは自然界に存在しないものとされているため、1976年を境に日本では行われていない。.

新しい!!: 病原体と種痘 · 続きを見る »

紀元前4世紀

National Archaeological Museum, Naples蔵)。 マケドニアの勃興。アレクサンドロス大王の父フィリッポス2世の時代からマケドニアは財力と軍事力によって周辺諸国を圧倒し始めた。画像はマケドニアの首都であったペラに残る「ディオニュソスの館」の遺跡。 プラトンのアカデメイア学園。アカデメイア学園は古典古代を通じて教育機関の模範と見なされ、後世「アカデミー」の語源ともなった。画像はローマ時代のポンペイのモザイク壁画(ナポリ国立考古学博物館蔵)。 アリストテレス。『形而上学』を初めとする諸学に通じ、「万学の祖」として後世の学問に多大な影響を与えるとともに、アレクサンドロス大王の家庭教師を務めたことでも知られる。画像はローマ国立博物館所蔵の胸像。 アスクレピオスの聖地でもあったエピダウロスの劇場はそれらの中でも最も保存状態が良く、この世紀に作られて以来、現在でも劇場として用いられている。 アッピア街道。「全ての道はローマに通ず」という言葉があるように、支配地域を拡大した都市国家ローマにとって軍事や運搬のための道路整備は不可欠だった。画像はクアルト・ミグリオ(Quarto Miglio)付近の街道の風景。 「エルチェの貴婦人」。フェニキア人の入植活動が盛んになる以前にイベリア半島にいた先住民イベリア人は独特な文化を発達させていた。イベリア人の文化を代表するこの貴婦人像はスペインのマドリッド国立考古学博物館に所蔵されている。 アケメネス朝の残照。大英博物館所蔵の「オクサスの遺宝」はマケドニアに滅ぼされたアケメネス朝の工芸の巧緻さを示すものとして名高い。画像はグリフォンをかたどった黄金の腕輪で紀元前5世紀から紀元前4世紀のもの。 チャンドラグプタがジャイナ教の師(スワミ)バドラバーフに帰依したことを記録した碑文で聖地シュラバナベラゴラに置かれているもの。 サクの王墓と大量の埋葬品が出土した。画像は出土した銀象嵌双翼神獣像。 紀元前4世紀(きげんぜんよんせいき)は、西暦による紀元前400年から紀元前301年までの100年間を指す世紀。.

新しい!!: 病原体と紀元前4世紀 · 続きを見る »

線形動物

線形動物(せんけいどうぶつ、学名:Nematoda、英名:Nematode, Roundworm)は、線形動物門に属する動物の総称である。線虫ともいう。かつてはハリガネムシなどの類線形動物 (Nematomorpha) も含んだが、現在は別の門とするのが一般的。また、日本では袋形動物門の一綱として腹毛動物・鰓曳動物・動吻動物などとまとめられていたこともあった。回虫・鞭虫などが含まれる。 大半の種は土壌や海洋中で非寄生性の生活を営んでいるが、同時に多くの寄生性線虫の存在が知られる。植物寄生線虫学 (nematology) では農作物に被害をもたらす線虫の、寄生虫学 (parasitology) ではヒトや脊椎動物に寄生する物の研究が行われている。.

新しい!!: 病原体と線形動物 · 続きを見る »

真正細菌

真正細菌(しんせいさいきん、bacterium、複数形 bacteria バクテリア)あるいは単に細菌(さいきん)とは、分類学上のドメインの一つ、あるいはそこに含まれる生物のことである。sn-グリセロール3-リン酸の脂肪酸エステルより構成される細胞膜を持つ原核生物と定義される。古細菌ドメイン、真核生物ドメインとともに、全生物界を三分する。 真核生物と比較した場合、構造は非常に単純である。しかしながら、はるかに多様な代謝系や栄養要求性を示し、生息環境も生物圏と考えられる全ての環境に広がっている。その生物量は膨大である。腸内細菌や発酵細菌、あるいは病原細菌として人との関わりも深い。語源はギリシャ語の「小さな杖」(βακτήριον)に由来している。.

新しい!!: 病原体と真正細菌 · 続きを見る »

瘴気

気(しょうき)は、古代から19世紀まで、ある種の病気(現在は感染症に分類されるもの)を引き起こすと考えられた「悪い空気」。気体または霧のようなエアロゾル状物質と考えられた。瘴気で起こると考えられた代表的な病気はマラリアで、この名は古いイタリア語で「悪い空気」という意味の mal aria から来ている。 ミアスマ、ミアズマ (μίασμα, miasma) ともいい、これはギリシア語で「不純物」「汚染」「穢れ」を意味する。漢字の「瘴」は、マラリアなど熱帯性の熱病とそれを生む風土を意味する。.

新しい!!: 病原体と瘴気 · 続きを見る »

結核

結核(けっかく、Tuberculosis)とは、マイコバクテリウム属の細菌、主に結核菌 (Mycobacterium tuberculosis) により引き起こされる感染症Kumar, Vinay; Abbas, Abul K.; Fausto, Nelson; & Mitchell, Richard N. (2007).

新しい!!: 病原体と結核 · 続きを見る »

結核菌

結核菌(けっかくきん、Mycobacterium tuberculosis、ヒト型結核菌)は、ヒトの結核の原因となる真正細菌。1882年、細菌学者ロベルト・コッホにより発見された。ヒトの病原菌としては、コッホの原則に基づいて病原性が証明された最初のものである。グラム陽性桿菌である抗酸菌の一種であり、細胞構造や培養のための条件など多くの点で他の一般的な細菌と異なる。特に、ミコール酸と呼ばれる特有の脂質に富んだ細胞壁を持つため消毒薬や乾燥に対して高い抵抗性を有する。保菌者の咳やくしゃみなどの飛沫、あるいはそれが乾燥したものを含むほこりなどから空気感染して、肺胞マクロファージの細胞内に感染し、肺結核をはじめとする各種の結核の原因となる。.

新しい!!: 病原体と結核菌 · 続きを見る »

病原性

病原性(びょうげんせい, pathogenicity)とは、真正細菌やウイルスなどの病原体が、他の生物に感染して宿主に感染症を起こす性質・能力のこと。 伝統的な医学微生物学では「病原性がある」あるいは「病原性がない」という用法で用いられる二値的な概念で、「病原性が高い」「病原性が低い」という用法は誤りとされていた(この場合はビルレンスを用いる)。しかし現代では、一般社会のみならず微生物学の専門分野においても「高病原性」などの表現が用いられることがあり、ビルレンスとの使い分けは曖昧になりつつある。.

新しい!!: 病原体と病原性 · 続きを見る »

病気

病気(びょうき)、病(やまい)は、人間や動物の心や体に不調または不都合が生じた状態のこと。(本記事で後述)。一般的に外傷などは含まれない。病気の類似概念としての、症候群(しょうこうぐん)、疾病(しっぺい)、疾患(しっかん)は、本記事でまとめて解説する。 別の読みである、病気(やまいけ)は、病気が起こるような気配をいう。.

新しい!!: 病原体と病気 · 続きを見る »

炭疽症

炭疽症(たんそしょう)、炭疽(たんそ)とは、炭疽菌による感染症。ヒツジやヤギなどの家畜や野生動物の感染症であるが、ヒトに感染する人獣共通感染症である。ヒトへは、感染動物との接触やその毛皮や肉から感染する。ヒトからヒトへは感染しない。感染症法における四類感染症、家畜伝染病予防法における家畜伝染病である。以下、とくに断りがない限りヒトにおける記述である。皮膚からの感染が最も多いが、芽胞を吸いこんだり、汚染した肉を不十分な加熱で食べた場合にも感染する。自然発生は極めてまれ。 炭疽とは「炭のかさぶた」の意味であり、英語名のAnthraxはギリシャ語で「炭」の意味である。この名称は皮膚炭疽の症状で黒いかさぶた(瘡蓋)ができることにちなむ。.

新しい!!: 病原体と炭疽症 · 続きを見る »

炭疽菌

炭疽菌(たんそきん、Bacillus anthracis)は、炭疽(症)の病原体となる細菌。病気の原因になることが証明された最初の細菌であり、また弱毒性の菌を用いる弱毒生菌ワクチンが初めて開発された、細菌学上重要な細菌である。第二次世界大戦以降、生物兵器として各国の軍事機関に研究され、2001年にはアメリカ炭疽菌事件で殺人に利用された。.

新しい!!: 病原体と炭疽菌 · 続きを見る »

生物

生物(せいぶつ)または生き物(いきもの)とは、動物・菌類・植物・古細菌・真正細菌などを総称した呼び方である。 地球上の全ての生物の共通の祖先があり(原始生命体・共通祖先)、その子孫達が増殖し複製するにつれ遺伝子に様々な変異が生じることで進化がおきたとされている。結果、バクテリアからヒトにいたる生物多様性が生まれ、お互いの存在(他者)や地球環境に依存しながら、相互に複雑な関係で結ばれる生物圏を形成するにいたっている。そのことをガイアとも呼ぶものもある。 これまで記録された数だけでも百数十万種に上ると言われており、そのうち動物は100万種以上、植物(菌類や藻類も含む)は50万種ほどである。 生物(なまもの)と読むと、加熱調理などをしていない食品のことを指す。具体的な例を挙げれば“刺身”などが代表的な例としてよく用いられる。.

新しい!!: 病原体と生物 · 続きを見る »

生物兵器

生物兵器(せいぶつへいき)とは、細菌やウイルス、あるいはそれらが作り出す毒素などを使用し、人や動物に対して使われる兵器のこと。国際法(ジュネーヴ議定書)で使用が禁止されている。生物兵器を使用した戦闘を生物戦(せいぶつせん)という。.

新しい!!: 病原体と生物兵器 · 続きを見る »

生活史

生活史(せいかつし).

新しい!!: 病原体と生活史 · 続きを見る »

狂犬病

病(きょうけんびょう、rabies)は、ラブドウイルス科リッサウイルス属の狂犬病ウイルス (Rabies virus) を病原体とするウイルス性の人獣共通感染症である。水などを恐れるようになる特徴的な症状があるため、恐水病または恐水症 (hydrophobia) と呼ばれることもある(実際は水だけに限らず、音や風も水と同様に感覚器に刺激を与えて痙攣等を起こす)。 毎年世界中で約5万人の死者を出しており、その95%以上はアフリカとアジアである。感染した動物に噛まれた人の40%は、15歳未満の子供であった。ヒトからヒトへの伝播がなく大流行に繋がる恐れもないことから、感染症対策の優先度が低くなる傾向がある。 日本では、感染症法に基づく四類感染症に指定されており(感染症法6条5項5号参照)、イヌなどの狂犬病については狂犬病予防法の適用を受け(狂犬病予防法2条参照)、また、ウシやウマなどの狂犬病については家畜伝染病として家畜伝染病予防法の適用を受ける(家畜伝染病予防法2条及び家畜伝染病予防法施行令1条参照)。 日本では咬傷事故を起こした動物は狂犬病感染の有無を確認するため、捕獲後2週間の係留観察が義務付けられている。係留観察中の動物が発症した場合は直ちに殺処分し、感染動物の脳組織から蛍光抗体法でウイルス抗原の検出を行う。.

新しい!!: 病原体と狂犬病 · 続きを見る »

発酵

酵(はっこう。醱酵とも表記).

新しい!!: 病原体と発酵 · 続きを見る »

菌類

菌類(きんるい)とは、一般にキノコ・カビ・酵母と呼ばれる生物の総称であり、菌界(学名:Regnum Fungi )に属する生物を指す。外部の有機物を利用する従属栄養生物であり、分解酵素を分泌して細胞外で養分を消化し、細胞表面から摂取する。 元来、「菌」とは本項で示す生物群を表す語であったが、微生物学の発展に伴い「細菌」などにも派生的に流用されるようになったため、区別の観点から真菌類(しんきんるい)、真菌(しんきん)とも呼ばれる。.

新しい!!: 病原体と菌類 · 続きを見る »

顕微鏡

顕微鏡(けんびきょう)とは、光学的もしくは電子的な技術を用いることによって、微小な物体を視覚的に拡大し、肉眼で見える大きさにする装置である。単に顕微鏡というと、光学顕微鏡を指すことが多い。 光学顕微鏡は眼鏡屋のヤンセン父子によって発明された。その後、顕微鏡は科学の様々な分野でこれまで多大な貢献をしてきた。その中で様々な改良を受け、また新たな形式のものも作られ、現在も随所に使用されている。顕微鏡を使用する技術のことを顕微鏡法、検鏡法という。また、試料を顕微鏡で観察できる状態にしたものをプレパラートという。.

新しい!!: 病原体と顕微鏡 · 続きを見る »

養蚕業

糸車 養蚕用竹かご 養蚕業(ようさんぎょう)は、カイコ(蚕)を飼ってその繭から生糸(絹)を作る産業である。遺伝子組み換えカイコを用いた医薬素材の生産や、カイコ蛹を利用して冬虫夏草(茸)を培養するといった新しいカイコの活用も進んでいる。 養蚕業は蚕を飼うためクワ(桑)を栽培し繭を生産する。繭を絹にするために製糸工場で繭から生糸へと加工され、生糸をさらに加工して絹織物などの繊維になる。なお、日本では蚕を使ったタンパク質の生産の研究が主になっているが、培養細胞によるタンパク質の生産効率の高まりとともに、蚕を用いる優位性は下がってきている。 かつて養蚕業は日本の主要産業であった。しかし、世界恐慌以降の海外市場の喪失、代替品の普及などで衰退していった。繭の生産は中国、インド、ブラジルなどで盛んに行われている。.

新しい!!: 病原体と養蚕業 · 続きを見る »

脱水 (医療)

脱水(だっすい、英:dehydration)とは、医学において体内の水分の量が不足した状態を言う。この脱水には二種類の状態が存在し、細胞外液(血漿と間質液)を失う“volume depletion"と、細胞外液中の水分と細胞内液中の水を失う “dehydration" があるが、日本ではこれらを総称して「脱水」と呼んでいる。.

新しい!!: 病原体と脱水 (医療) · 続きを見る »

自己実験

自己実験(じこじっけん)とは意図的に自分を対象に含む実験。 自己実験の135以上の事例が文献で裏付けられている。その多くが、医学的な研究として行われたが、自然科学や社会科学の研究者も自己実験を行っている。.

新しい!!: 病原体と自己実験 · 続きを見る »

自然災害

マトラ島沖地震 (2004年)の津波で破壊されたスマトラ島西部の街 自然災害(しぜんさいがい、natural disaster)とは、危機的な自然現象(natural hazard, 例えば気象、火山噴火、地震、地すべり)によって、人命や人間の社会的活動に被害が生じる現象をいう。 日本の法令上では「自然災害」は「暴風、豪雨、豪雪、洪水、高潮、地震、津波、噴火その他の異常な自然現象により生ずる被害」と定義されている(被災者生活再建支援法2条1号)。 単なる自然現象が、人的被害を伴う「自然災害」に発展したり、災害が拡大したりするには、現地の社会条件が大きな影響を及ぼす。.

新しい!!: 病原体と自然災害 · 続きを見る »

自然発生説

自然発生説(しぜんはっせいせつ)とは、「生物が親無しで無生物(物質)から一挙に生まれることがある平凡社『世界大百科事典』1988年「自然発生説」」とする、生命の起源に関する説の1つである。一般にアリストテレスが提唱したとされている。近代に至るまでこれを否定する者はおらず、19世紀までの二千年以上にわたり支持された。 フランチェスコ・レディの対照実験を皮切りに自然発生説を否定する実験的証明が始まり1861年のルイ・パスツール著『自然発生説の検討』に至って、自然発生説がほぼ完全に否定された、とされる。 別名、偶然発生説とも呼ばれる。.

新しい!!: 病原体と自然発生説 · 続きを見る »

腐敗

腐敗したカニ 腐敗(ふはい)とは、有機物が微生物の作用によって変質(不完全分解)する現象をいう。腐敗には、それにより味の劣化や不快臭、有毒物質が生じる場合(狭義の腐敗)と、有用または無害な場合とがある。また、「精神が堕落し、悪徳がはびこること」を意味することもある。 腐敗物には腐敗アミン(インドール、ケトン)などが生成分解するため独特の臭気(主に硫化水素やアンモニアなどによる悪臭)を放つ。また、腐敗によって増殖した微生物が病原性のものであった場合には有毒物質を生じ、食中毒の原因ともなる。腐敗の具体的内容は多岐にわたり、元の材料、その置かれた温度、水分などの条件によって様々に変化する。これは、基質と条件によって働く微生物が異なるのが大きな原因である。腐敗の判定には化学的判定、物理的判定について研究されている。 腐敗は、生体で利用されていた有機窒素化合物を単純な有機窒素化合物や無機窒素化合物に変化させ、自然界において生物が窒素を循環利用することに寄与している。.

新しい!!: 病原体と腐敗 · 続きを見る »

腺ペスト

腺ペスト(英語:bubonic plague)は3種類あるペストの1種であり、ペスト菌によって発病する。ヒトペストの80-90%を占める。.

新しい!!: 病原体と腺ペスト · 続きを見る »

抗生物質

抗生物質(こうせいぶっしつ、antibiotics)とは「微生物が産生し、ほかの微生物の発育を阻害する物質」と定義される。広義には、「微生物が産生」したものを化学修飾したり人工的に合成された抗菌剤、腫瘍細胞のような「ほかの微生物」以外の細胞の増殖や機能を阻害する物質を含めることもある生化学辞典第2版、p.471【抗生物質】。通俗的に抗ウイルス薬と混同されることもあるが誤りである。 アレクサンダー・フレミングが1928年にアオカビから見付けたペニシリンが世界初の抗生物質である。ペニシリンの発見から実用化までの間には10年もの歳月を要したものの、いったん実用化されたのちはストレプトマイシンなどの抗生物質を用いた抗菌薬が次々と開発され、人類の医療に革命をもたらした。ペニシリンの開発は20世紀でもっとも偉大な発見のひとつで「奇跡の薬」と呼ばれることがあるのも、このことによる。 1990年頃には、天然由来の抗生物質は5,000〜6,000種類があると言われ、約70種類(微量成分を含めると約100種類)が実用に使われている。この他にも半合成抗生物質も80種が利用されている。 しかし乱用が指摘されており、抗生物質処方の50%以上は不適切であるとOECDは報告している。WHOやCDCはガイドラインを作成し、適切な利用を呼び掛けている。厚生労働省も2017年ガイドライン第1版を公開した。薬剤耐性菌を生む問題があり、感染症でもないのに使用することは戒められる。.

新しい!!: 病原体と抗生物質 · 続きを見る »

抗血清

抗血清(こうけっせい、)とはポリクローナル抗体を含む血清。抗血清は多くの疾病の受動免疫を伝達するために使用される。 過去のヒトの生存者からの受動抗体の導入はエボラ出血熱に対する唯一有効な治療法である。.

新しい!!: 病原体と抗血清 · 続きを見る »

捕食

捕食(ほしょく)とは、生物が餌となる対象の動物を捕らえて食うことである。狭義では肉食動物が餌となる対象の動物を捕らえて殺し、食うことを指す。 動物行動学的観点では、捕食と言えば、肉食動物が摂食に際して、対象となる動物が生きていて、しかも逃げるなり対抗するなりといった防御行動が可能であり、それを何らかの方法で拘束し、抵抗を排除し、食べるに至る過程を意味する。したがって、卵を食う、死体をあさる、微生物を水ごと飲み込む、などを捕食と言うことはない。 しかし、個体群生態学や群集生態学的観点において、捕食-被食関係という場合の「捕食」とは、動物に限らず、植物や菌類も含めて他の生物を「食う」という意味であって、特に、肉食や捕獲と言った意味を持たず、さらに寄生すらも含めてしまう場合もある。食う・食われるの関係で結ばれた関係が食物連鎖、あるいは食物網である。.

新しい!!: 病原体と捕食 · 続きを見る »

捕食寄生

捕食寄生(ほしょくきせい)とは、生物に見られる寄生の一つの型で、寄生者が宿主を必ず殺してしまう寄生のことである。昆虫に例が多い。.

新しい!!: 病原体と捕食寄生 · 続きを見る »

核酸

RNAとDNA、それぞれの核酸塩基 核酸(かくさん)は、リボ核酸 (RNA)とデオキシリボ核酸 (DNA)の総称で、塩基と糖、リン酸からなるヌクレオチドがホスホジエステル結合で連なった生体高分子である。糖の部分がリボースであるものがRNA、リボースの2'位の水酸基が水素基に置換された2-デオキシリボースであるものがDNAである。RNAは2'位が水酸基であるため、加水分解を受けることにより、DNAよりも反応性が高く、熱力学的に不安定である。糖の 1'位には塩基(核酸塩基)が結合している。さらに糖の 3'位と隣の糖の 5'位はリン酸エステル構造で結合しており、その結合が繰り返されて長い鎖状になる。転写や翻訳は 5'位から 3'位への方向へ進む。 なお、糖鎖の両端のうち、5'にリン酸が結合して切れている側のほうを 5'末端、反対側を 3'末端と呼んで区別する。また、隣り合う核酸上の領域の、5'側を上流、3'側を下流という。.

新しい!!: 病原体と核酸 · 続きを見る »

梅毒

梅毒(ばいどく、Syphilis。黴毒、瘡毒(そうどく)とも)は、スピロヘータの1種である梅毒トレポネーマ (Treponema pallidum) によって発生する感染症である。第一感染経路は性行為であるため性病の1つとして数えられるものの、妊娠中、出生時の母子感染による先天性梅毒もある。梅毒の徴候や症状は、4段階でそれぞれ異なる。 梅毒は、1999年、全世界で推定1200万人で新規感染したと考えられており、その90%以上は発展途上国での感染である。1940年代のペニシリンの普及以降、発症は劇的に減少したが、2000年以降、多くの国々で感染率が増加しつつある。たびたびヒト免疫不全ウイルスと併発するケースがあり、乱交、売春、コンドーム不使用に起因する。有効なワクチンは存在せず、抗菌薬の投与により治癒しても終生免疫は得られず、(梅毒に再び感染した場合)再感染が起こる 国立感染症研究所。 in vitroでの培養は不可能のため、病原性の機構はほとんど解明されていない。1998年には全ゲノムのDNA配列が決定、公開されている。また、理由は不明だが、ウサギの睾丸内では培養することができる。.

新しい!!: 病原体と梅毒 · 続きを見る »

毒素

有毒な物質あるいは環境を示すハザードシンボル。 毒素(どくそ、toxin)は、生細胞あるいは生体内で産生される有毒物質である。したがって、人為的過程によって作り出された人工物質は除外される。Toxinは古代ギリシャ語のτοξικόν (toxikon) に由来する。この用語 (toxin) は有機化学者ルートヴィヒ・ブリーガー(1849年-1919年)によって初めて使用された。 生体内で産生されたものではない有毒物質には、英語では「toxicant」および「toxics」が使われることがある。 毒素には低分子、ペプチド、タンパク質があり、生体組織と接触あるいは吸収され、酵素あるいは受容体といった生体高分子と相互作用することにより病気を引き起こすことができる。 毒素によってその重症度には、軽度のもの(例えばハナバチの針に含まれる毒素)から致死のもの(ボツリヌストキシンなど)まで大きく差異がある。.

新しい!!: 病原体と毒素 · 続きを見る »

消毒

消毒(しょうどく、disinfection)とは、広義では人体に有害な物質を除去または無害化することであり、広義の消毒には化学物質の中和を含む。 狭義では病原微生物を殺すこと(殺菌など)、または病原微生物の能力を減退させ病原性をなくすことである。無菌にすることではない。 類似する概念として滅菌や殺菌があるが意味が異なる。.

新しい!!: 病原体と消毒 · 続きを見る »

昆虫

昆虫(こんちゅう)は、節足動物門汎甲殻類六脚亜門昆虫綱(学名: )の総称である。昆虫類という言葉もあるが、多少意味が曖昧で、六脚類の意味で使うこともある。なお、かつては全ての六脚虫を昆虫綱に含めていたが、分類体系が見直され、現在はトビムシなど原始的な群のいくつかが除外されることが多い。この項ではこれらにも触れてある。 昆虫は、硬い外骨格をもった節足動物の中でも、特に陸上で進化したグループである。ほとんどの種は陸上で生活し、淡水中に棲息するものは若干、海中で棲息する種は例外的である。水中で生活する昆虫は水生昆虫(水棲昆虫)とよばれ、陸上で進化した祖先から二次的に水中生活に適応したものと考えられている。 世界の様々な気候、環境に適応しており、種多様性が非常に高い。現時点で昆虫綱全体で80万種以上が知られている。現在知られている生物種に限れば、半分以上は昆虫である。.

新しい!!: 病原体と昆虫 · 続きを見る »

日和見感染

日和見感染(ひよりみかんせん、opportunistic infection)は、健康な動物では感染症を起こさないような病原体(弱毒微生物・非病原微生物・平素無害菌などと呼ばれる)が原因で発症する感染症である。.

新しい!!: 病原体と日和見感染 · 続きを見る »

放線菌

放線菌(ほうせんきん、羅・英: Actinomycetes)は一般に、グラム陽性の真正細菌のうち、細胞が菌糸を形成して細長く増殖する形態的特徴を示すものを指していた。元来、菌糸が放射状に伸びるためこの名があるが、現在の放線菌の定義は16S rRNA遺伝子の塩基配列による分子系統学に基づいているため、桿菌や球菌も放線菌に含められるようになり、もはやこのグループを菌糸形成という形態で特徴づけることは困難である。 学名のActinobacteria(放線菌門)は、ギリシア語で光線、放射を意味するακτίς(アクティース)とバクテリアを合成したもの。また、放線菌類を意味する一般名詞Actinomyceteは、ακτίςに、菌類を意味する接尾語-mycetes(ミュケーテース、語源はギリシア語で菌を意味するμύκες(ミュケース))を合わせたものである。 ''Streptomyces''属など典型的な放線菌では空気中に気菌糸を伸ばし胞子を形成するので、肉眼的には糸状菌のように見える。多くは絶対好気性で土壌中に棲息するが、土壌以外にも様々な自然環境や動植物の病原菌としても棲息している。また病原放線菌として知られる''Actinomyces''属とその関連菌群などのように嫌気性を示す放線菌も一部存在する。放線菌のDNAはそのGC含量が高く(多くは70%前後)、それがこの菌群の大きな特徴である。 分類学的には下記に示す多くの属が放線菌綱に分類されるが、マイクロコッカス目(Order Micrococcales)の各属のように菌糸形態を示さないものは便宜的に放線菌として扱われないこともある。.

新しい!!: 病原体と放線菌 · 続きを見る »

感染

感染(かんせん、infection)とは、生物の体内もしくは表面に、より体積の小さい微生物等の病原体が寄生し、増殖するようになる事。また、侵入等のその過程。 それによっておこる疾患を感染症という。 単細胞生物もウイルスによる感染を受ける。また、寄生虫の体長は宿主を超える事もある。.

新しい!!: 病原体と感染 · 続きを見る »

感染経路

感染経路(かんせんけいろ、route of infection)は、感染を生じた個体や環境中に存在する病原体が、未感染の個体に到達して新たに感染を起こす経路をいう。病原体によっては複数の感染経路を介して感染を生じる場合もある。伝染病をはじめとした集団感染や院内感染の予防など感染管理上は病原体を突き止め感染源を割り出すことも重要だが、何よりも感染経路を絶たなければ終息は図れない。.

新しい!!: 病原体と感染経路 · 続きを見る »

感染症

感染症(かんせんしょう、英語:infectious disease)とは、寄生虫、細菌、真菌、ウイルス、異常プリオン等の病原体の感染により、「宿主」に生じる望まれざる反応(病気)の総称。.

新しい!!: 病原体と感染症 · 続きを見る »

感染症の予防及び感染症の患者に対する医療に関する法律

感染症の予防及び感染症の患者に対する医療に関する法律(かんせんしょうのよぼうおよびかんせんしょうのかんじゃにたいするいりょうにかんするほうりつ、平成10年10月2日法律第114号)は、感染症の予防及び感染症の患者に対する医療に関する措置を定めた日本の法律。感染症予防法、感染症法、感染症新法とも言う。 従来の「伝染病予防法」「性病予防法」「エイズ予防法」の3つを統合し1998年に制定、1999年4月1日に施行された。その後の2007年4月1日、「結核予防法」を統合し、また人権意識の高まりから「人権尊重」や「最小限度の措置の原則」を明記するなどの改正がされた。 感染力や罹患した場合の重篤性などに基づき、感染症を危険性が高い順に一類から五類に分類する。既知の感染症であっても、危険性が高く特別な対応が必要であると判断される場合は、政令により「指定感染症」に指定し対応する。また、既に知られている感染症と異なり、危険度が高いと考えられる新たな感染症が確認された場合「新感染症」として分類し対応する。SARSや人獣共通感染症への対策もある。 また、動物の感染症には、狂犬病予防法や家畜伝染病予防法の規制もあるが、狂犬病、ブルセラ病など双方に指定されている病気もある。.

新しい!!: 病原体と感染症の予防及び感染症の患者に対する医療に関する法律 · 続きを見る »

敗血症

感染症と全身性炎症反応症候群と敗血症の関係。 敗血症(はいけつしょう、sepsis)とは、感染症に対する制御不能な生体反応に起因する生命を脅かすような臓器障害のことで、患者数は世界で年間約2700万人。そのうち約800万人が死亡していると報告されている。国際的な診断基準では感染症が疑われSOFAスコアがベースラインから2点以上増加しているものを敗血症としている。細菌感染症の全身に波及したもので非常に重篤な状態であり、無治療ではショック、播種性血管内凝固症候群(DIC)、多臓器不全などから死に至る。元々の体力低下を背景としていることが多く、治療成績も決して良好ではない。 これに対し、傷口などから細菌が血液中に侵入しただけの状態は菌血症と呼ばれ区別される。また、敗血症と全身性炎症反応症候群(SIRS)は似た概念だが、全身性炎症反応症候群は感染によらない全身性の炎症をも含む概念である『日本版敗血症診療ガイドライン』2013年版による。.

新しい!!: 病原体と敗血症 · 続きを見る »

手術

アキレス腱の手術 手術(しゅじゅつ、surgery, operation)とは、外科的機器やメスなどを用いて患部を切開し、治療的処置を施すこと。通称、略称としてオペとも呼ばれる(独: Operationに由来)。.

新しい!!: 病原体と手術 · 続きを見る »

14世紀

ナスル朝。イベリア半島最後のイスラム王朝であるこの王朝はすでに半島南端を占めるだけの小国となっていたが文化や芸術は最後の輝きを見せていた。画像はイスラム特有のアラベスクに彩られたアルハンブラ宮殿の「二姉妹の間」。 Gilles Le Muisitの年代記』の挿絵)。 エドワード3世率いるイングランド軍にフランス軍が大敗を喫した。画像はこの戦いを描いたジャン・フロワサールの『年代記』写本の挿絵。 ユダヤ人迫害。中世末期の不穏な情勢の中でスケープゴートとして標的にされたのがユダヤ人であった。画像は15世紀にまとめられた『ニュルンベルク年代記』の木版挿絵で、1338年に起きたバイエルン地方のデッゲンドルフでの「聖餅󠄀冒瀆」の罪により、生きながら火炙りにされたユダヤ人たちが描かれている。 カルマル同盟。デンマーク摂政(事実上の女王)マルグレーテ1世がデンマーク・ノルウェー・スウェーデンの三国を統合した。画像はロスキレ大聖堂に安置されたマルグレーテの石棺。 七選帝侯。神聖ローマ帝国では諸侯の分権化が強く選帝侯を味方につけることで帝権は維持された。やがてこの選出方法は金印勅書で法制化されることになる。 原初同盟は14世紀にはハプスブルク家との戦いに勝利し自立への道を踏み固めていった。画像は1315年のモルガルテンの戦いを描いたもの。 アヴィニョン教皇宮殿の正面入り口。 ダンテとベアトリーチェ。ダンテは地獄・煉獄・天国をまわる壮大な『神曲』を書いた詩人。画像は19世紀のヘンリー・ホリデーによるもの(ウォーカー・アート・ギャラリー蔵)。 シエナ。この街は黒死病の被害の影響が大きかったため景観が変化せず中世都市の面影を強く残した街となっている。画像はアンブロージョ・ロレンツェッティによるシエナのプブリコ宮殿(現シエナ市役所)九頭の間の壁画「善政の効果」。 セルビア人の帝国。ネマニッチ朝のステファン・ウロシュ4世ドゥシャンは東ローマ帝国を抑えバルカン最強の国家を樹立した。画像はウロシュ4世により創建されたコソボのデチャニ修道院にあるネマニッチ一族の系譜を描いたフレスコ画。 Codex Mendoza」。 後醍醐天皇。鎌倉幕府を亡ぼし建武の新政を行ったが、政権崩壊後には逃れて吉野に南朝を立てた。画像は清浄光寺所蔵の肖像画。 足利義満。室町幕府3代将軍で南北朝の統一を行い、将軍位を息子義持に譲ってからも法体で実際の政治を握っていた。画像は鹿苑寺所蔵の肖像画。 西アフリカのマリ王国の王マンサ・ムーサ。イスラム教徒としてメッカに巡礼に向かう旅路で黄金を惜しみなく使った逸話で知られる。 Baptistère de Saint Louis」。フランス歴代国王が実際に用いた洗礼盤だが、聖王ルイの時代より正確には半世紀ほど後のもので、マムルーク朝時代のエジプトまたはシリアで作られたイスラム工芸を代表する名品。現在はルーヴル美術館が所蔵している。 歴史家ラシードゥッディーン。その当時の知られていた世界の歴史を『集史』としてまとめ上げた。画像は彼が仕えたイル・ハン国の君主ガザンとオルジェイトゥの兄弟を描いた『集史』の挿絵。 草原の英雄ティムール。モンゴル帝国の分裂後の中央アジア・西アジアはティムールによって統一された。画像は1370年のバルフ包囲戦を描いたホーンダミール『清浄園』の16世紀の写本の挿絵。 ハンピ)のヴィルーパークシャ寺院。 チベット仏教の改革者ツォンカパ。綱紀粛正に努め左道密教を退けて現在のダライラマに連なるゲルク派(黄帽派)を大成した。 青花の誕生。元朝後期に西アジア産のコバルト顔料を用いて白磁に紋様を描く青花(染付)の技法が開発された。画像はこの世紀に造られた「青花魚藻文壺(ブルックリン美術館蔵)」。 明の洪武帝朱元璋。モンゴル人の元朝を北方に追いやり、漢民族の王朝を復興した。画像は洪武帝の肖像画(台北国立故宮博物院蔵)。 14世紀(じゅうよんせいき)は、西暦1301年から西暦1400年までの100年間を指す世紀。.

新しい!!: 病原体と14世紀 · 続きを見る »

1546年

記載なし。

新しい!!: 病原体と1546年 · 続きを見る »

16世紀

16世紀(じゅうろくせいき)は、西暦1501年から西暦1600年までの100年間を指す世紀。 盛期ルネサンス。歴代ローマ教皇の庇護によりイタリア・ルネサンスの中心はローマに移動した。画像はこの時代に再建がなされたローマのサン・ピエトロ大聖堂の内部。 カール5世。スペイン王を兼ねイタリア各地やネーデルラントも支配したが周辺諸国との戦いにも明け暮れた。画像はティツィアーノによる騎馬像(プラド美術館蔵)。 「太陽の沈まない帝国」。カール5世の息子フェリペ2世の時代にスペインは目覚ましい発展を遂げ貿易網は地球全体に及んだ。画像はフェリペ2世によって建てられたエル・エスコリアル修道院。ここには王宮も併設されておりフェリペ2世はここで執務を行った。.

新しい!!: 病原体と16世紀 · 続きを見る »

17世紀

ルイ14世の世紀。フランスの権勢と威信を示すために王の命で壮麗なヴェルサイユ宮殿が建てられた。画像は宮殿の「鏡の間」。 スペインの没落。国王フェリペ4世の時代に「スペイン黄金時代」は最盛期を過ぎ国勢は傾いた。画像は国王夫妻とマルガリータ王女を取り巻く宮廷の女官たちを描いたディエゴ・ベラスケスの「ラス・メニーナス」。 ルネ・デカルト。「我思う故に我あり」で知られる『方法序説』が述べた合理主義哲学は世界の見方を大きく変えた。画像はデカルトとその庇護者であったスウェーデン女王クリスティナ。 プリンキピア』で万有引力と絶対空間・絶対時間を基盤とするニュートン力学を構築した。 オランダの黄金時代であり数多くの画家を輩出した。またこの絵にみられる実験や観察は医学に大きな発展をもたらした。 チューリップ・バブル。オスマン帝国からもたらされたチューリップはオランダで愛好され、その商取引はいつしか過熱し世界初のバブル経済を生み出した。画像は画家であり園芸家でもあったエマヌエル・スウェールツ『花譜(初版は1612年刊行)』の挿絵。 三十年戦争の終結のために開かれたミュンスターでの会議の様子。以後ヨーロッパの国際関係はヴェストファーレン体制と呼ばれる主権国家を軸とする体制へと移行する。 チャールズ1世の三面肖像画」。 ベルニーニの「聖テレジアの法悦」。 第二次ウィーン包囲。オスマン帝国と神聖ローマ帝国・ポーランド王国が激突する大規模な戦争となった。この敗北に続いてオスマン帝国はハンガリーを喪失し中央ヨーロッパでの優位は揺らぐことになる。 モスクワ総主教ニーコンの改革。この改革で奉神礼や祈祷の多くが変更され、反対した人々は「古儀式派」と呼ばれ弾圧された。画像はワシーリー・スリコフの歴史画「貴族夫人モローゾヴァ」で古儀式派の信仰を守り致命者(殉教者)となる貴族夫人を描いている。 スチェパン・ラージン。ロシアではロマノフ朝の成立とともに農民に対する統制が強化されたが、それに抵抗したドン・コサックの反乱を率いたのがスチェパン・ラージンである。画像はカスピ海を渡るラージンと一行を描いたワシーリー・スリコフの歴史画。 エスファハーンの栄華。サファヴィー朝のシャー・アッバース1世が造営したこの都市は「世界の半分(エスファハーン・ネスフェ・ジャハーン・アスト)」と讃えられた。画像はエスファハーンに建てられたシェイク・ロトフォラー・モスクの内部。 タージ・マハル。ムガル皇帝シャー・ジャハーンが絶世の美女と称えられた愛妃ムムターズ・マハルを偲んでアーグラに建てた白亜の霊廟。 アユタヤ朝の最盛期。タイでは中国・日本のみならずイギリスやオランダの貿易船も来訪し活況を呈した。画像はナーラーイ王のもとで交渉をするフランス人使節団(ロッブリーのプラ・ナーライ・ラーチャニーウエート宮殿遺跡記念碑)。 イエズス会の中国宣教。イエズス会宣教師は異文化に対する順応主義を採用し、中国の古典教養を尊重する漢人士大夫の支持を得た。画像は『幾何原本』に描かれたマテオ・リッチ(利瑪竇)と徐光啓。 ブーヴェの『康熙帝伝』でもその様子は窺える。画像は1699年に描かれた読書する40代の康熙帝の肖像。 紫禁城太和殿。明清交代の戦火で紫禁城の多くが焼亡したが、康熙帝の時代に再建がなされ現在もその姿をとどめている。 台湾の鄭成功。北京失陥後も「反清復明」を唱え、オランダ人を駆逐した台湾を根拠地に独立政権を打ち立てた。その母が日本人だったこともあり近松門左衛門の「国姓爺合戦」などを通じて日本人にも広く知られた。 江戸幕府の成立。徳川家康は関ヶ原の戦いで勝利して征夷大将軍となり、以後260年余にわたる幕府の基礎を固めた。画像は狩野探幽による「徳川家康像」(大阪城天守閣蔵)。 日光東照宮。徳川家康は死後に東照大権現の称号を贈られ日光に葬られた。続く三代将軍徳川家光の時代までに豪奢で絢爛な社殿が造営された。画像は「日暮御門」とも通称される東照宮の陽明門。 歌舞伎の誕生。1603年に京都北野社の勧進興業で行われた出雲阿国の「かぶき踊り」が端緒となり、男装の女性による奇抜な演目が一世を風靡した。画像は『歌舞伎図巻』下巻(名古屋徳川美術館蔵)に描かれた女歌舞伎の役者采女。 新興都市江戸。17世紀半ばには江戸は大坂や京都を凌ぐ人口を擁するまでとなった。画像は明暦の大火で焼失するまで威容を誇った江戸城天守閣が描かれた「江戸図屏風」(国立歴史民俗博物館蔵)。 海を渡る日本の陶磁器。明清交代で疲弊した中国の陶磁器産業に代わり、オランダ東インド会社を通じて日本から陶磁器が数多く輸出された。画像は1699年に着工されたベルリンのシャルロッテンブルク宮殿の「磁器の間」。 海賊の黄金時代。西インド諸島での貿易の高まりはカリブ海周辺に多くの海賊を生み出した。画像はハワード・パイルが描いた「カリブ海のバッカニーア」。 スペイン副王支配のリマ。リマはこの当時スペインの南米支配の拠点であり、カトリック教会によるウルトラバロックとも呼ばれる壮麗な教会建築が並んだ。画像は1656年の大地震で大破したのちに再建されたリマのサン・フランシスコ教会・修道院。 17世紀(じゅうしちせいき、じゅうななせいき)は、西暦1601年から西暦1700年までの100年間を指す世紀。.

新しい!!: 病原体と17世紀 · 続きを見る »

1876年

記載なし。

新しい!!: 病原体と1876年 · 続きを見る »

1882年

記載なし。

新しい!!: 病原体と1882年 · 続きを見る »

1892年

記載なし。

新しい!!: 病原体と1892年 · 続きを見る »

18世紀

Jean-Pierre Houëlが描いたバスティーユ襲撃(フランス国立図書館蔵)。 国立マルメゾン城美術館蔵)。 ロンドン・ナショナル・ギャラリー蔵)。 18世紀(じゅうはっせいき)は、西暦1701年から西暦1800年までの100年間を指す世紀。.

新しい!!: 病原体と18世紀 · 続きを見る »

19世紀

19世紀に君臨した大英帝国。 19世紀(じゅうきゅうせいき)は、西暦1801年から西暦1900年までの100年間を指す世紀。.

新しい!!: 病原体と19世紀 · 続きを見る »

ここにリダイレクトされます:

病原微生物病原性細菌病原菌

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »