ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
無料
ブラウザよりも高速アクセス!
 

冪乗

索引 冪乗

冪演算(べきえんざん、英: 独: 仏: Exponentiation)は、底 (base) および冪指数 (exponent) と呼ばれる二つの数に対して定まる数学的算法である。通常は、冪指数を底の右肩につく上付き文字によって示す。自然数 を冪指数とする冪演算は累乗(るいじょう、repeated multiplication) に一致する。 具体的に、 および冪指数 を持つ冪 (power) は、 が自然数(正整数)のとき、底の累乗 で与えられる。このとき は の -乗とか、-次の -冪などと呼ばれる。 よく用いられる冪指数に対しては、固有の名前が与えられているものがある。例えば冪指数 に対して二次の冪(二乗) は の平方 (square of) あるいは -自乗 (-squared) と呼ばれ、冪指数 に対する三次の冪 は の立方 (cube of, -cubed) と呼ばれる。また冪指数 に対して冪 は であり の逆数(あるいは乗法逆元)と呼ばれる。一般に負の整数 に対して底 が零でないとき、冪 はふつう なる性質を保つように と定義される。 冪演算は任意の実数あるいは複素数を冪指数とするように定義を拡張することができる。底および冪指数が実数であるような冪において、底を固定して冪指数を変数と見なせば指数函数が、冪指数を固定して底を変数と見れば冪函数がそれぞれ生じる。整数乗冪に限れば、行列などを含めた非常に多種多様な代数的対象に対してもそれを底とする冪を定義することができるが、冪指数まで同種の対象に拡張するならばその上で定義された自然指数函数と自然対数函数を持つ完備ノルム環(例えば実数全体 や複素数全体 などはそう)を想定するのが自然である。.

142 関係: 加群の直和力学系基数ねじれ群半群単位元反復合成写像可換体多価関数始対象と終対象実数対合上付き文字常用漢字三角関数平方数乗法交換法則二項演算二進法代数的構造仮名 (文字)作用素当用漢字微分圭 (数学)マルコフ連鎖マグマ (数学)チャールズ・バベッジハイパー演算子バナッハ環モノイドモンゴメリ乗算ヨスト・ビュルギルネ・デカルトビットテンソル解析ディフィー・ヘルマン鍵共有デカルト閉圏フランス語フラクタルフロベニウス自己準同型フワーリズミードイツ語ベルリンベクトル場ベクトル空間列 (数学)分数階微積分学和算...アラビア数学アルキメデスアルゴリズムアーベル群アイザック・ニュートンエウクレイデスカール・フリードリヒ・ガウスガロア理論クレレ誌コンピュータシュレーディンガー方程式ゼロ除算タプル冪対象冪乗則冪函数冪剰余冪級数冪集合冪根函数的平方根公開鍵暗号固有値C0半群空積立方数符号算法 (数学)算数素数線型代数学群 (数学)群論結合法則環 (数学)点ごとの積熱伝導直積集合Disquisitiones Arithmeticae違いを除いて順序数行列行列の乗法行列環複素数誤った数学的推論部分群の指数自乗自然対数自然数配置集合英語離散対数集合集合の圏集合論逆三角関数逆写像逆元逆数除法RSA暗号抽象代数学技術評論社極限標数江戸時代波動方程式添字表記法演算子の優先順位指数 (初等整数論)指数関数有理数数学数学的帰納法数学的構造数列数論括弧0の0乗11/161/21/41/8161950年代22の冪48 インデックスを展開 (92 もっと) »

加群の直和

抽象代数学における直和(ちょくわ、direct sum)は、いくつかの加群を一つにまとめて新しい大きな加群にする構成である。加群の直和は、与えられた加群を「不必要な」制約なしに部分加群として含む最小の加群であり、余積の例である。双対概念であると対照をなす。 この構成の最もよく知られた例はベクトル空間(体上の加群)やアーベル群(整数環 Z 上の加群)を考えるときに起こる。構成はバナッハ空間やヒルベルト空間をカバーするように拡張することもできる。.

新しい!!: 冪乗と加群の直和 · 続きを見る »

力学系

力学系(りきがくけい、英語:dynamical system)とは、一定の規則に従って時間の経過とともに状態が変化するシステム(系)、あるいはそのシステムを記述するための数学的なモデルのことである。一般には状態の変化に影響を与える数個の要素を変数として取り出し、要素間の相互作用を微分方程式または差分方程式として記述することによってモデル化される。 力学系では、システムの状態を実数の集合によって定義している。各々の状態の違いは、その状態を代表する変数の差のみによって表現される。システムの状態の変化は関数によって与えられ、現在の状態から将来の状態を一意に決定することができる。この関数は、状態の発展規則と呼ばれる。 力学系の例としては、振り子の振動や自然界に存在する生物の個体数の変動、惑星の軌道などが挙げられるが、この世界の現象すべてを力学系と見なすこともできる。システムの振る舞いは、対象とする現象や記述のレベルによって多種多様である。;力学系の具体例.

新しい!!: 冪乗と力学系 · 続きを見る »

基数

数学において基数(きすう、cardinal number又はcardinals)とは、集合のカーディナリティ(濃度、大きさ、サイズ)を測るためのものとしての自然数の一般化である。有限集合の濃度(cardinality)は、つまり有限集合の要素の個数は自然数である。無限集合のサイズは、超限基数で記述される。 濃度は全単射をもちいて定義される。2つの集合が等しい濃度を持つとは、その集合の間に全単射が存在するということである。有限集合の場合は、サイズの直感的概念に同意できるだろう。無限集合の場合は、振る舞いは複雑になってくる。ゲオルグ・カントールが示した基礎的な理論は無限集合の濃度は1種類だけではないことを示したのである。特に、実数の集合の濃度は自然数の集合の濃度より真に大きいということを示した(カントールの定理)。また、有限集合の真部分集合と元の集合の濃度が等しくなり得ないのに対し、無限集合の真部分集合の濃度が元の集合の濃度と等しいということは起こりうるのである(デデキント無限も参照)。 基数の超限列が存在する: この列は、有限基数である自然数が最初に並んでいて、その後に整列集合の無限基数であるアレフ・ナンバー (aleph number) が続く。アレフ・ナンバーは順序数によって添字付けられている。選択公理の仮定の下で、この超限列はすべての基数を含んでいる。もし、選択公理が仮定されなければ、アレフ・ナンバーでない無限基数に関して状況はさらに複雑になってくる。 濃度は、集合論の一部のために研究されている。また、組合せ論や抽象代数学、解析学を含めた数学の各分野の道具としても使われる。圏論では、基数は集合の圏の skelton を形成する。.

新しい!!: 冪乗と基数 · 続きを見る »

ねじれ群

群論における捩れ群(ねじれぐん、torsion group)または周期群(しゅうきぐん、periodic group)はその各元が有限位数を持つ群を言う。 任意の有限群は周期的である。なお、周期群と巡回群とは違うものである。; 定義: ねじれ群 に対して、そのすべての元の位数の最小公倍数を(存在すれば) の冪数 (exponent) と呼ぶ。 任意の有限群は冪数を持ち、それは の位数 の約数である。 有限群とねじれ群の間の関係性を扱うは、 が有限生成群とだけ仮定する場合には、古典的な問題である。それは冪数を特定することが有限性を導くかを問うもの(そして一般には答えは「否」)である。 無限ねじれ群の例として、有限体上の多項式環の加法群や、有理数の加法群を整数の加法群で割った商およびそれらの直和因子、プリューファー群などが挙げられる。他にも、二面体群すべての合併などもそうである。以上の例は有限生成でなく、また任意の有限生成ねじれ線型群は有限群になる。有限生成無限周期群の陽な例は、 がと共同で構成した(を参照)。あるいはまた と がオートマトンを用いて構成した。.

新しい!!: 冪乗とねじれ群 · 続きを見る »

半群

数学における半群(はんぐん、semigroup)は集合 S とその上の結合的二項演算とをあわせて考えた代数的構造である。言い換えれば、半群とは演算が結合的なマグマのことをいう。半群の名は、既存の群の概念に由来するものである。半群は、各元が必ずしも逆元を持たないこと(さらに、単位元すら持たないかもしれないこと)が、群と異なる。 半群の演算はほとんど乗法的に書かれる(順序対 (x, y) に対して演算を施した結果を x • y などで、あるいは単に xy で表す)。 半群についてきちんとした形での研究が行われるようになるのは20世紀の初めごろからである。半群は、「無記憶」系 ("memoryless" system) すなわち各反復時点でゼロから開始される時間依存系 (time-dependent system) の抽象代数的な定式化の基盤であるので、数学の各種分野において重要な概念である。応用数学においては、半群はの基本モデルである。また偏微分方程式論では、半群は空間発展的かつ時間非依存な任意の方程式に対応している。有限半群論は1950年代以降、有限半群と有限オートマトンとの間の自然な関連性から、理論計算機科学の分野で特に重要となった。確率論では半群はマルコフ過程に関連付けられている 。.

新しい!!: 冪乗と半群 · 続きを見る »

単位元

数学、とくに抽象代数学において、単位元(たんいげん, )あるいは中立元(ちゅうりつげん, )は、二項演算を備えた集合の特別な元で、ほかのどの元もその二項演算による単位元との結合の影響を受けない。.

新しい!!: 冪乗と単位元 · 続きを見る »

反復合成写像

数学における写像の反復適用および反復合成(はんぷくごうせい、iteration)は、同じ写像を繰り返し適用すること(繰り返してもよい)、および同じ写像同士で合成を繰り返すことをいう。またそうして得られた写像は、もとの写像の反復合成写像 (iterated function) あるいは合成冪 (power) と呼ぶ。適当な対象を初期値として、それに反復合成写像を適用して得られる値の列は、初期値の軌道 (orbit) と言う。 反復合成は計算機科学、フラクタル、力学系など、あるいは数学および繰り込み群の物理学において研究の対象となる。.

新しい!!: 冪乗と反復合成写像 · 続きを見る »

可換体

抽象代数学において、可換体(かかんたい、corps commutatif)あるいは単に体(たい、field)本記事において単に体と言った場合「可換」体を意味するものとする。とは、零でない可換可除環、あるいは同じことだが、非零元全体が乗法の下で可換群をなすような環のことである。そのようなものとして体は、適当なアーベル群の公理と分配則を満たすような加法、減法、乗法、除法の概念を備えた代数的構造である。最もよく使われる体は、実数体、複素数体、有理数体であるが、他にも有限体、関数の体、代数体、''p'' 進数体、などがある。 任意の体は、線型代数の標準的かつ一般的な対象であるベクトル空間のスカラーとして使うことができる。(ガロワ理論を含む)体拡大の理論は、ある体に係数を持つ多項式の根に関係する。他の結果として、この理論により、古典的な問題である定規とコンパスを用いたや円積問題が不可能であることの証明や五次方程式が代数的に解けないというアーベル・ルフィニの定理の証明が得られる。現代数学において、体論は数論や代数幾何において必要不可欠な役割を果たしている。 代数的構造として、すべての体は環であるが、すべての環が体であるわけではない。最も重要な違いは、体は(ゼロ除算を除いて)除算ができるが、環は乗法逆元がなくてもよいということである。例えば、整数の全体は環をなすが、2x.

新しい!!: 冪乗と可換体 · 続きを見る »

多価関数

多価関数(たかかんすう、multivalued function)とは、完全関係のひとつであり、一つの入力が与えられたときに一つあるいは複数の出力を得るものである。しかし現代的な定義での関数は写像の一種とみなされ、一つの入力があるときに出力を一つだけ得るものと定義されることが多く、この場合には多価関数を「関数」と呼ぶのは不適切となる(下記多価関数#歴史的経緯参照)。多価関数は単射でない関数から得ることができる。そのような関数では逆関数が定義できないが、逆関係 (inverse relation) はある。多価関数は、この逆関係に相当する。.

新しい!!: 冪乗と多価関数 · 続きを見る »

始対象と終対象

数学の抽象的な分野である圏論において、圏 の始対象(したいしょう、initial object, coterminal object)とは、 の任意の対象 に対してちょうど一つの射 が存在するような の対象 のことを指す。圏 の終対象(しゅうたいしょう、final object, terminal object)とは、始対象の双対概念であり、 の任意の対象 に対してちょうど一つの射 が存在するような の対象 のことを指す。 始対象でも終対象でもあるような対象は零対象(れいたいしょう、ゼロたいしょう、zero object, null object)と呼ばれる。点付き圏 とは零対象を持つ圏を言う。.

新しい!!: 冪乗と始対象と終対象 · 続きを見る »

実数

数学における実数(じっすう、 nombre réel, reelle Zahl, real number)は、様々な量の連続的な変化を表す数の体系である。実数全体の空間は、途切れのなさにあたる完備性とよばれる位相的な性質を持ち、代数的には加減乗除ができるという体の構造を持っている。幾何学や解析学ではこれらのよい性質を利用して様々な対象が定義され、研究されている。一方でその構成方法に自明でない手続きが含まれるため、実数の空間は数学基礎論の観点からも興味深い性質を持っている。また、自然科学における連続的なものの計測値を表すのに十分な数の体系だとも考えられている。 実数の概念は、その形式的な定義が19世紀に達成される前から数の体系として使われていた。「実数」という名前は複素数の概念が導入された後に「普通の数」を表現する言葉として導入されたものである。.

新しい!!: 冪乗と実数 · 続きを見る »

対合

対合(たいごう、ついごう、involution)は、自分自身をその逆として持つ写像である。 これは空間上の変換であって、二回繰り返すと恒等変換となる(元に戻る)という性質 を持つものと言ってもよい。ただし、それ自身が恒等変換となるものは通常は除いて考える。またこれは変換群に属する位数 2 の元 を指すと言っても同じことであり、それを理由に一般の群(抽象群)においても位数 2 の元を対合と呼ぶことがある。.

新しい!!: 冪乗と対合 · 続きを見る »

上付き文字

上付き文字(うえつきもじ、superscript)は、基準となる文字より上部に記述される添え字である。 数学における冪乗を表す目的や、化学におけるイオン価数を表す目的、原子核物理学・放射線医学などにおける放射性同位元素の質量数を表す目的として使われるほか、文書における脚注参照、単位記号、TMなどの一部記号、発音記号などとしても用いられる。 冪乗の目的で使用される場合は、イオン価数の目的で使用される文字よりも上部に表記される。 フランス語、イタリア語、スペイン語などのロマンス諸語では、数字に上付きで e もしくは o/a を付記し、序数とその性を表示する。Unicode では、序数標識 º と ª が用意されている。これらは音楽などにも流用され、たとえば「テンポプリーモ」を "tempo 1º " と表記する。 HTMLのタグで表記する場合は<sup>上付き文字</sup>が使用される。.

新しい!!: 冪乗と上付き文字 · 続きを見る »

常用漢字

常用漢字(じょうようかんじ)は、「法令、公用文書、新聞、雑誌、放送など、一般の社会生活において、現代の国語を書き表す場合の漢字使用の目安」として内閣告示「常用漢字表」で示された現代日本における日本語の漢字。現行の常用漢字表は、2010年(平成22年)11月30日に平成22年内閣告示第2号として告示され、2136字/4388音訓[2352音・2036訓]から成る。 常用漢字表の目的は、漢字使用の目安であって制限ではない一方、日本の学習指導要領では義務教育の国語で読みを習う漢字は常用漢字しか規定がない。日本の主な報道機関は、日本新聞協会が発行する『新聞用語集』(新聞用語懇談会編)に掲載される新聞常用漢字表に基づき、各社で多少手を加えて、漢字使用の基準としている場合が多い。.

新しい!!: 冪乗と常用漢字 · 続きを見る »

三角関数

三角関数(さんかくかんすう、trigonometric function)とは、平面三角法における、角の大きさと線分の長さの関係を記述する関数の族および、それらを拡張して得られる関数の総称である。三角関数という呼び名は三角法に由来するもので、後述する単位円を用いた定義に由来する呼び名として、円関数(えんかんすう、circular function)と呼ばれることがある。 三角関数には以下の6つがある。.

新しい!!: 冪乗と三角関数 · 続きを見る »

平方数

平方数(へいほうすう、)とは、自然数の自乗(二乗)で表される整数のことである。正方形の形に点を並べたときにそこに並ぶ点の総数に等しいので、四角数(しかくすう)ともいい、多角数の一種である。最小の平方数として、定義に を加えることができる。平方数は無数にあり、その列は次のようになる。 平方数の列の隣接二項間についての漸化式を考えると、 から連続する正の奇数の総和は平方数に等しい:\sum_^n (2k-1).

新しい!!: 冪乗と平方数 · 続きを見る »

乗法

算術における乗法 (じょうほう、multiplication) は、算術の四則と呼ばれるものの一つで、整数では、一方の数 (被乗数、ひじょうすう、multiplicand) に対して他方の数 (乗数、じょうすう、multiplier) の回数だけ繰り返し和をとる(これを掛けるまたは乗じるという。)ことにより定義できる演算である。掛け算(かけざん)、乗算(じょうざん)とも呼ばれる。代数学においては、変数の前の乗数(例えば 3y の 3)は係数(けいすう、coefficient)と呼ばれる。 逆の演算として除法をもつ。乗法の結果を積 (せき、product) と呼ぶ。 乗法は、有理数、実数、複素数に対しても拡張定義される。また、抽象代数学においては、一般に可換とは限らない二項演算に対して、それを乗法、積などと呼称する(演算が可換である場合はしばしば加法、和などと呼ぶ)。.

新しい!!: 冪乗と乗法 · 続きを見る »

交換法則

交換法則(こうかんほうそく、Commutative property) は数学における法則の一つ。可換則(かかんそく)や交換律(こうかんりつ)ともいう。.

新しい!!: 冪乗と交換法則 · 続きを見る »

二項演算

数学において、二項演算(にこうえんざん、binary operation)は、数の四則演算(加減乗除)などの 「二つの数から新たな数を決定する規則」 を一般化した概念である。二項算法(にこうさんぽう)、結合などともいう。.

新しい!!: 冪乗と二項演算 · 続きを見る »

二進法

二進法(にしんほう)とは、2 を底(てい、基(base)とも)とし、底の冪の和で数を表現する方法である。 英語でバイナリ (binary) という。binaryという語には「二進法」の他に「二個一組」「二個単位」といったような語義もある(例: バイナリ空間分割)。.

新しい!!: 冪乗と二進法 · 続きを見る »

代数的構造

数学において代数的構造(だいすうてきこうぞう、algebraic structure)とは、集合に定まっている算法(演算ともいう)や作用によって決まる構造のことである。代数的構造の概念は、数学全体を少数の概念のみを用いて見通しよく記述するためにブルバキによって導入された。 また、代数的構造を持つ集合は代数系(だいすうけい、algebraic system)であるといわれる。すなわち、代数系というのは、集合 A とそこでの算法(演算の規則)の族 R の組 (A, R) のことを指す。逆に、具体的なさまざまな代数系から、それらが共通してもつ原理的な性質を抽出して抽象化・公理化したものが、代数的構造と呼ばれるのである。 なお、分野(あるいは人)によっては代数系そのもの、あるいは代数系のもつ算法族のことを代数的構造とよぶこともあるようである。 後者は、代数系の代数構造とも呼ばれる。 現代では、代数学とは代数系を研究する学問のことであると捉えられている。.

新しい!!: 冪乗と代数的構造 · 続きを見る »

仮名 (文字)

仮名(かな)とは、漢字をもとにして日本で作られた文字のこと。現在一般には平仮名と片仮名のことを指す。表音文字の一種であり、基本的に1字が1音節をあらわす音節文字に分類される。漢字に対して和字(わじ)ともいう。ただし和字は和製漢字を意味することもある。.

新しい!!: 冪乗と仮名 (文字) · 続きを見る »

作用素

数学における作用素(さようそ、operator)は、しばしば写像、函数、変換などの同義語として用いられる。函数解析学においては主にヒルベルト空間やバナッハ空間上の(必ずしも写像でない部分写像の意味での)線型変換を単に作用素と呼ぶ。そのような空間として特に函数空間と呼ばれる函数の成す無限次元線型空間は典型的であり(同じものを物理学の分野、特に量子力学などでは演算子(えんざんし)と呼ぶ)、このとき、作用素を関数を別の関数にうつす写像として理解することができる。数(定数関数)の集合に値をとる作用素は汎函数(はんかんすう、functional)と呼ばれる。 また、群や環が空間に作用しているとき、群や環の各元が定める空間上の変換、あるいはその変換が引き起こす関数空間上の変換のことを作用素ということがある。.

新しい!!: 冪乗と作用素 · 続きを見る »

当用漢字

当用漢字(とうようかんじ)は、1946年(昭和21年)11月5日に国語審議会が答申し、同年11月16日に内閣が告示した「当用漢字表」に掲載された1,850の漢字を指す。「当用」とは「さしあたって用いる」の意。 広義には、当用漢字表(1946年〈昭和21年〉11月16日)当用漢字別表(1948年〈昭和23年〉2月16日)当用漢字音訓表(同)当用漢字字体表(1949年〈昭和24年〉4月28日)当用漢字改定音訓表(1973年〈昭和48年〉6月18日)という一連の内閣告示を総称する。 1981年(昭和56年)、常用漢字表の告示に伴い当用漢字表は廃止された。.

新しい!!: 冪乗と当用漢字 · 続きを見る »

微分

数学におけるの微分(びぶん)、微分係数、微分商または導函数(どうかんすう、derivative)は、別の量(独立変数)に依存して決まるある量(函数の値あるいは従属変数)の変化の感度を測るものである。微分は微分積分学の基本的な道具である。例えば、動く物体の位置の時間に関する導函数はその物体の速度であり、これは時間が進んだときその物体の位置がどれほど早く変わるかを測る。 一変数函数の適当に選んだ入力値における微分係数は、その点における函数のグラフの接線の傾きである。これは導函数がその入力値の近くでその函数の最適線型近似を記述するものであることを意味する。そのような理由で、微分係数はしばしば「瞬間の変化率」として記述される。瞬間の変化率は独立変数に依存する従属変数である。 微分はにも拡張できる。この一般化において、導函数はそのグラフが(適当な変換の後)もとの函数のグラフを最適線型近似する線型変換と解釈しなおされる。ヤコビ行列はこの線型変換を独立および従属変数を選ぶことで与えられる基底に関して表現する行列であり、独立変数に関する偏微分を用いて計算することができる。多変数実数値函数に対して、ヤコビ行列は勾配に簡約される。 導函数を求める過程を微分あるいは微分法、微分演算 (differentiation) と言い、その逆の過程(原始函数を求めること)をという。微分積分学の基本定理は反微分が積分と同じであることを主張する。一変数の微分積分学において微分と積分は基本的な操作の二本柱である。.

新しい!!: 冪乗と微分 · 続きを見る »

圭 (数学)

数学における圭(けい)、分配亜群(ぶんぱいあぐん、дистрибутивныи Группоид; destributive groupoid, quandle; カンドル)および残滓(ざんし、rack; ラック)は、結び目の局所変形であるライデマイスター移動を図式操作と考えたときに抽出される公理と類似の公理を満たす二項演算を備えた集合である。 主に結び目理論を背景として研究されるものであるが、抽象代数学的な構造としては、自身の右からの作用を備えた代数系であると見なすことができる。.

新しい!!: 冪乗と圭 (数学) · 続きを見る »

マルコフ連鎖

マルコフ連鎖(マルコフれんさ、Markov chain)とは、確率過程の一種であるマルコフ過程のうち、とりうる状態が離散的(有限または可算)なもの(離散状態マルコフ過程)をいう。また特に、時間が離散的なもの(時刻は添え字で表される)を指すことが多い(他に連続時間マルコフ過程というものもあり、これは時刻が連続である)。マルコフ連鎖は、未来の挙動が現在の値だけで決定され、過去の挙動と無関係である(マルコフ性)。各時刻において起こる状態変化(遷移または推移)に関して、マルコフ連鎖は遷移確率が過去の状態によらず、現在の状態のみによる系列である。特に重要な確率過程として、様々な分野に応用される。.

新しい!!: 冪乗とマルコフ連鎖 · 続きを見る »

マグマ (数学)

抽象代数学におけるマグマ(magma)または亜群(あぐん、)は、演算によって定義される種類の基本的な代数的構造であり、集合 M とその上の二項演算 M × M → M からなる組をいう。マグマ M における二項演算は M において閉じていることは要求するが、それ以外の何らの公理も課すものではない。 このような構造に対して「マグマ」という呼称を導入したのはニコラ・ブルバキであるフランス語で "magma" は(複数の意味があるが)「ゴチャゴチャ」「支離滅裂」であるという意味である。フランスの数学者集団であるブルバキが「二項演算が定義されているだけの集合」にマグマと名づけて言及したのは、(群や環とは違い)そのような取り留めの無い広範な概念にどのような整理をつけて扱えばよいかわからないといったことが念頭にあってのことであろう。。旧来はオイステイン・オアによる用語で亜群()と呼ばれていたもので、現在でもしばしばそのように呼ばれる。ただし、それとは別に圏論において「亜群()」と呼ばれる概念があるので、それと混同してはならない。.

新しい!!: 冪乗とマグマ (数学) · 続きを見る »

チャールズ・バベッジ

チャールズ・バベッジ(Charles Babbage、FRS、1791年12月26日 - 1871年10月18日)は、イギリスの数学者。分析哲学者、計算機科学者でもあり、世界で初めて「プログラム可能」な計算機を考案した。「コンピュータの父」と言われることもあり、初期の機械式計算機を発明し、さらに複雑な設計に到達した。その完成しなかった機械の一部はサイエンス・ミュージアムに展示されている。1991年、バベッジの本来の設計に基づいて階差機関が組み立てられ、完全に機能した。これは19世紀当時の技術の精度に合わせて作られており、バベッジのマシンが当時完成していれば動作していたことを証明した。9年後、サイエンス・ミュージアムはバベッジが階差機関用に設計したプリンターも完成させた。.

新しい!!: 冪乗とチャールズ・バベッジ · 続きを見る »

ハイパー演算子

ハイパー演算子 (hyper operator) は、加算、乗算、冪乗を一般化した演算のための演算子である。.

新しい!!: 冪乗とハイパー演算子 · 続きを見る »

バナッハ環

数学の、特に関数解析学の分野におけるバナッハ環(バナッハかん、; バナッハ代数、バナッハ多元環、バナッハ線型環)は、完備ノルム体(ふつうは実数体 または 複素数体 )上の結合多元環 であって、バナッハ空間(ノルムが存在し、に関して完備)ともなる。バナッハ代数におけるノルムは乗法に関して を満たすことが要求され、それにより乗法の連続性は保証される。名称はステファン・バナッハに由来する。 上述の定義において、バナッハ空間をノルム空間に緩める(つまり完備性を要請しない)場合、同様の構造はノルム環(ノルム線型環)と呼ばれる。 バナッハ環は、乗法単位元を持つとき、単位的(unital)であると言う。また乗法が可換であるとき、可換と言う。単位元を持つ持たないにかかわらず、任意のバナッハ環 は適当な単位的バナッハ環(つまり の「単位化」) にこの閉イデアルとなるように等長的に埋め込める。しばしば、扱っている環は単位的であるということがアプリオリに仮定される。すなわち、 を考えることで多くの理論を展開でき、その結果を元の環に応用するという方法が取られることがある。しかしこの方法は常に有効という訳ではない。例えば、単位元を持たないバナッハ環においては、すべての三角関数を定義することが出来ない。 実バナッハ環の理論は、複素バナッハ環の理論とは非常に異なるものである。例えば、非自明な複素バナッハ環の元のスペクトルは決して空とはならないが、実バナッハ環においてはいくつかの元のスペクトルは空となり得る。 p-進数体 上のバナッハ代数(-進バナッハ代数)は、p-進解析の一部として研究される。.

新しい!!: 冪乗とバナッハ環 · 続きを見る »

モノイド

数学、とくに抽象代数学における単系(たんけい、monoid; モノイド)はひとつの二項演算と単位元をもつ代数的構造である。モノイドは単位元をもつ半群(単位的半群)であるので、半群論の研究対象の範疇に属する。 モノイドの概念は数学のさまざまな分野に現れる。たとえば、モノイドはそれ自身が「ただひとつの対象をもつ圏」と見ることができ、したがって「集合上の写像とその合成」といった概念を捉えたものと考えることもできる。モノイドの概念は計算機科学の分野でも、その基礎付けや実用プログラミングの両面で広く用いられる。 モノイドの歴史や、モノイドに一般的な性質を付加した議論などは半群の項に譲る。.

新しい!!: 冪乗とモノイド · 続きを見る »

モンゴメリ乗算

モンゴメリ乗算(モンゴメリじょうざん)とは、特に時間のかかる除算を実質的に行うことなく、乗算・加減算・シフト演算のみで、高速に整数の積の剰余を求めることのできるアルゴリズムである。 数100ビットを超える法による冪剰余演算は、暗号理論の分野で重要な応用を持ち、モンゴメリ乗算を用いればこれを効率的に計算することができる。 Peter Montgomeryにより提案された。モンゴメリ法ともいう。.

新しい!!: 冪乗とモンゴメリ乗算 · 続きを見る »

ヨスト・ビュルギ

ヨスト・ビュルギ ヨスト・ビュルギ(Jost Bürgi またはJoost Bürgi またはJobst Bürgi 、1558年2月28日 - 1632年1月31日)はスイス生まれの時計職人、天文機器製作者である。ジョン・ネイピアとは独立に対数を発見した。 スイスのザンクト・ガレン州トッケンブルク(Toggenburg)に生まれた。1579年から1604年の間ドイツのカッセルで活躍した。時計や観測機器の製作で評価を得た。天文学の観測に、ゲオルク・プールバッハの三角関数表を用い、1588年に対数を用いて計算を行った。(対数の発見者はより早く対数について発表したジョン・ネイピアの業績とされる)1604年から1630年の間はルドルフ2世にプラハに招かれ、ヨハネス・ケプラーの計算係を務めた。1631年にカッセルに戻りカッセルで没した。 Category:スイスの数学者 Category:スイスの技術者 580228 -580228 Category:数学に関する記事 Category:1558年生 Category:1632年没.

新しい!!: 冪乗とヨスト・ビュルギ · 続きを見る »

ルネ・デカルト

ルネ・デカルト(René Descartes、1596年3月31日 - 1650年2月11日)は、フランス生まれの哲学者、数学者。合理主義哲学の祖であり、近世哲学の祖として知られる。.

新しい!!: 冪乗とルネ・デカルト · 続きを見る »

ビット

ビット (bit, b) は、ほとんどのデジタルコンピュータが扱うデータの最小単位。英語の binary digit (2進数字)の略であり、2進数の1けたのこと。量子情報科学においては古典ビットと呼ばれる。 1ビットを用いて2通りの状態を表現できる(二元符号)。これらの2状態は一般に"0"、"1"と表記される。 情報理論における選択情報およびエントロピーの単位も「ビット」と呼んでいるが、これらの単位は「シャノン」とも呼ばれる(詳細は情報量を参照)。 省略記法として、バイトの略記である大文字の B と区別するために、小文字の b と表記する。.

新しい!!: 冪乗とビット · 続きを見る »

テンソル解析

数学におけるテンソル解析(テンソルかいせき、tensor calculus, tensor analysis)はベクトル解析をテンソル場(時空などの多様体上を変化するテンソル)に対して拡張するものである。 とその弟子トゥーリオ・レヴィ゠チヴィタによって展開され、アルベルト・アインスタインが自身の一般相対論の展開に用いた。無限小解析と対照的に、物理方程式を多様体上の座標の取り方にで表すことができる。 物理学や工学における、連続体力学、電磁気学、一般相対論など、テンソル解析は多くの実生活的な応用を持つ、.

新しい!!: 冪乗とテンソル解析 · 続きを見る »

ディフィー・ヘルマン鍵共有

ディフィー・ヘルマン鍵共有(ディフィー・ヘルマンかぎきょうゆう、Diffie-Hellman key exchange、DH)、あるいはディフィー・ヘルマン鍵交換(かぎこうかん)とは、事前の秘密の共有無しに、盗聴の可能性のある通信路を使って、暗号鍵の共有を可能にする暗号プロトコルである。この鍵は、共通鍵暗号方式の鍵として使用可能である。.

新しい!!: 冪乗とディフィー・ヘルマン鍵共有 · 続きを見る »

デカルト閉圏

圏論において、カテゴリーがデカルト閉(デカルトへい、cartesian closed)であるとは、大雑把に言えば任意の二つの対象の直積上で定義される射が直積因子の一方で定義される射と自然に同一視できることである。デカルト閉な圏はラムダ計算の自然な設定ができるという点で数理論理学およびプログラミングの理論において特に重要である。デカルト閉圏の概念はモノイド圏に一般化される(モノイド閉圏を参照)。.

新しい!!: 冪乗とデカルト閉圏 · 続きを見る »

フランス語

フランス語(フランスご)は、インド・ヨーロッパ語族のイタリック語派に属する言語。ロマンス諸語のひとつで、ラテン語の口語(俗ラテン語)から変化したフランス北部のオイル語(またはウィ語、langue d'oïl)が母体と言われている。日本語では、仏蘭西語、略して仏語とも書く。 世界で英語(約80の国・地域)に次ぐ2番目に多くの国・地域で使用されている言語で、フランス、スイス、ベルギー、カナダの他、かつてフランスやベルギーの領域だった諸国を中心に29カ国で公用語になっている(フランス語圏を参照)。全世界で1億2,300万人が主要言語として使用し、総話者数は2億人以上である。国際連合、欧州連合等の公用語の一つにも選ばれている。このフランス語の話者を、'''フランコフォン''' (francophone) と言う。.

新しい!!: 冪乗とフランス語 · 続きを見る »

フラクタル

フラクタル(, fractal)は、フランスの数学者ブノワ・マンデルブロが導入した幾何学の概念である。ラテン語 fractus から。 図形の部分と全体が自己相似になっているものなどをいう。.

新しい!!: 冪乗とフラクタル · 続きを見る »

フロベニウス自己準同型

可換環論や体論では、フロベニウス自己準同型 (フロベニウス写像、Frobenius endomorphism, Frobenius map) (フェルディナント・ゲオルク・フロベニウスの名前にちなむ)は、有限体を含む重要なクラスである素数の標数 をもつ可換環の特別な自己準同型のことを言う。この自己準同型写像は、各元を 乗する。ある文脈においては、自己同型となるが、一般にこれは正しくない。.

新しい!!: 冪乗とフロベニウス自己準同型 · 続きを見る »

フワーリズミー

フワーリズミー 1983年のソビエト連邦の記念切手 アル=フワーリズミー(الخوارزمي al-Khuwārizmī)ことアブー・アブドゥッラー・ムハンマド・イブン・ムーサー・アル=フワーリズミー(أبو عبد الله محمد ابن موسى الخوارزمي)は、9世紀前半にアッバース朝時代のバグダードで活躍したイスラム科学の学者である。アッバース朝第7代カリフ、マアムーンに仕え、特に数学と天文学の分野で偉大な足跡を残した。.

新しい!!: 冪乗とフワーリズミー · 続きを見る »

ドイツ語

ドイツ語(ドイツご、独:Deutsch、deutsche Sprache)は、インド・ヨーロッパ語族・ゲルマン語派の西ゲルマン語群に属する言語である。 話者人口は約1億3000万人、そのうち約1億人が第一言語としている。漢字では独逸語と書き、一般に独語あるいは独と略す。ISO 639による言語コードは2字が de、3字が deu である。 現在インターネットの使用人口の全体の約3パーセントがドイツ語であり、英語、中国語、スペイン語、日本語、ポルトガル語に次ぐ第6の言語である。ウェブページ数においては全サイトのうち約6パーセントがドイツ語のページであり、英語に次ぐ第2の言語である。EU圏内では、母語人口は域内最大(ヨーロッパ全土ではロシア語に次いで多い)であり、話者人口は、英語に次いで2番目に多い。 しかし、歴史的にドイツ、オーストリアの拡張政策が主に欧州本土内で行われたこともあり、英語、フランス語、スペイン語のように世界語化はしておらず、基本的に同一民族による母語地域と、これに隣接した旧支配民族の使用地域がほとんどを占めている。上記の事情と、両国の大幅な領土縮小も影響して、欧州では非常に多くの国で母語使用されているのも特徴である。.

新しい!!: 冪乗とドイツ語 · 続きを見る »

ベルリン

ベルリン(Berlin 、伯林)は、ドイツ北東部、ベルリン・ブランデンブルク大都市圏地域の中心に位置する都市である。16ある連邦州のうちの一つで、市域人口は万人とドイツでは最大の都市で欧州連合の市域人口ではロンドンに次いで2番目に多く、都市的地域の人口は7番目に多い。同国の首都と定められている。.

新しい!!: 冪乗とベルリン · 続きを見る »

ベクトル場

ベクトル場(ベクトルば、vector field)とは、数学において、幾何学的な空間の広がりの中でベクトル的な量の分布を表すものである。単純化された設定のもとではベクトル場はユークリッド空間 Rn (またはその開集合)からベクトル空間 Rn への関数として与えられる。(局所的な)座標系のもとでベクトル場を表示するときは座標に対してベクトルを与えるような関数を考えることになるが、座標系を変更したときにこの関数は一定の規則に従って変換を受けることが要請される。 ベクトル場の概念は物理学や工学においても積極的にもちいられ、例えば動いている流体の速さと向きや、磁力や重力などの力の強さと向きなどが空間的に分布している状況を表すために用いられている。 現代数学では多様体論にもとづき、多様体上の接ベクトル束の断面として(接)ベクトル場が定義される。.

新しい!!: 冪乗とベクトル場 · 続きを見る »

ベクトル空間

数学、特に線型代数学におけるベクトル空間(ベクトルくうかん、vector space)、または、線型空間(せんけいくうかん、linear space)は、ベクトルと呼ばれる元からなる集まりの成す数学的構造である。ベクトルには和が定義され、またスカラーと呼ばれる数による積(「スケール変換」)を行える。スカラーは実数とすることも多いが、複素数や有理数あるいは一般の体の元によるスカラー乗法を持つベクトル空間もある。ベクトルの和とスカラー倍の演算は、「ベクトル空間の公理」と呼ばれる特定の条件(後述)を満足するものでなければならない。ベクトル空間の一つの例は、力のような物理量を表現するのに用いられる幾何ベクトルの全体である(同じ種類の任意の二つの力は、加え合わせて力の合成と呼ばれる第三の力のベクトルを与える。また、力のベクトルを実数倍したものはまた別の力のベクトルを表す)。同じ調子で、ただしより幾何学的な意味において、平面や空間での変位を表すベクトルの全体もやはりベクトル空間を成す。 ベクトル空間は線型代数学における主題であり、ベクトル空間はその次元(大雑把にいえばその空間の独立な方向の数を決めるもの)によって特徴づけられるから、その観点からはよく知られている。ベクトル空間は、さらにノルムや内積などの追加の構造を持つこともあり、そのようなベクトル空間は解析学において主に函数をベクトルとする無限次元の函数空間の形で自然に生じてくる。解析学的な問題では、ベクトルの列が与えられたベクトルに収束するか否かを決定することもできなければならないが、これはベクトル空間に追加の構造を考えることで実現される。そのような空間のほとんどは適当な位相を備えており、それによって近さや連続性といったことを考えることができる。こういた位相線型空間、特にバナッハ空間やヒルベルト空間については、豊かな理論が存在する。 歴史的な視点では、ベクトル空間の概念の萌芽は17世紀の解析幾何学、行列論、連立一次方程式の理論、幾何ベクトルの概念などにまで遡れる。現代的な、より抽象的な取扱いが初めて定式化されるのは、19世紀後半、ペアノによるもので、それはユークリッド空間よりも一般の対象が範疇に含まれるものであったが、理論の大半は(直線や平面あるいはそれらの高次元での対応物といったような)古典的な幾何学的概念を拡張することに割かれていた。 今日では、ベクトル空間は数学のみならず科学や工学においても広く応用される。ベクトル空間は線型方程式系を扱うための適当な線型代数学的概念であり、例えば画像圧縮ルーチンで使われるフーリエ展開のための枠組みを提示したり、あるいは偏微分方程式の解法に用いることのできる環境を提供する。さらには、テンソルのような幾何学的および物理学的な対象を、抽象的に座標に依らない で扱う方法を与えてくれるので、そこからさらに線型化の手法を用いて、多様体の局所的性質を説明することもできるようになる。 ベクトル空間の概念は様々な方法で一般化され、幾何学や抽象代数学のより進んだ概念が導かれる。.

新しい!!: 冪乗とベクトル空間 · 続きを見る »

列 (数学)

数学において列(れつ、sequence)とは、粗く言えば、対象あるいは事象からなる集まりを「順序だてて並べる」ことで、例えば「A,B,C」は3つのものからなる列である。狭義にはこの例のように一列に並べるものを列と呼ぶが、広義にはそうでない場合(すなわち半順序に並べる場合)も列という場合がある(例:有向点列)。集合との違いは順番が決まっている事で、順番を変更したものは別の列であるとみなされる。たとえば列「A,B,C」と列「B,C,A」は異なる列である。 数を並べた列を数列、(何らかの空間上の)点を並べた列を点列、文字を並べた列を文字列(あるいは語)という。このように同種の性質○○を満たすもののみを並べた場合にはその列を「○○列」という言い方をするが、異なる種類のものを並べた列も許容されている。 列の構成要素は、列の要素あるいは項(こう、term)と呼ばれ、例えば「A,B,C」には3つの項がある。項の個数をその列の項数あるいは長さ (length, size) という。項数が有限である列を有限列(ゆうげんれつ、finite sequence)と、そうでないものを無限列(むげんれつ、infinite sequence)と呼ぶ。(例えば正の偶数全体の成す列 (2, 4, 6,...) )。.

新しい!!: 冪乗と列 (数学) · 続きを見る »

分数階微積分学

分数階微分積分学(ぶんすうかいびぶんせきぶんがく、fractional calculus)は解析学の一分野で、微分作用素 D および積分作用素 J が実数冪あるいは複素数冪をとる可能性について研究する。 この文脈における「冪」の語は作用素の合成を繰り返し行うという意味で用いており、それに従えばたとえば f2(x).

新しい!!: 冪乗と分数階微積分学 · 続きを見る »

和算

和算(わさん)は、日本独自に発達した数学である。狭義には大いに発展した江戸時代の関孝和以降のそれを指すが、西洋数学導入以前の数学全体を指すこともある。.

新しい!!: 冪乗と和算 · 続きを見る »

アラビア数学

アラビア数学(アラビアすうがく、Arabic mathematics)とは、8世紀から15世紀のイスラム世界において、主にアラビア語を用いて行われた数学全般のことである。近年ではイスラム数学 (Islamic mathematics) と称される場合もある。名称は慣例によるものであって、必ずしも明確に対象を表しておらず、アラブ地域外でも行われ、担い手にはアラブ人でない者もイスラム教徒でない者もいた。.

新しい!!: 冪乗とアラビア数学 · 続きを見る »

アルキメデス

アルキメデス(Archimedes、Ἀρχιμήδης、紀元前287年? - 紀元前212年)は、古代ギリシアの数学者、物理学者、技術者、発明家、天文学者。古典古代における第一級の科学者という評価を得ている。.

新しい!!: 冪乗とアルキメデス · 続きを見る »

アルゴリズム

フローチャートはアルゴリズムの視覚的表現としてよく使われる。これはランプがつかない時のフローチャート。 アルゴリズム(algorithm )とは、数学、コンピューティング、言語学、あるいは関連する分野において、問題を解くための手順を定式化した形で表現したものを言う。算法と訳されることもある。 「問題」はその「解」を持っているが、アルゴリズムは正しくその解を得るための具体的手順および根拠を与える。さらに多くの場合において効率性が重要となる。 コンピュータにアルゴリズムをソフトウェア的に実装するものがコンピュータプログラムである。人間より速く大量に計算ができるのがコンピュータの強みであるが、その計算が正しく効率的であるためには、正しく効率的なアルゴリズムに基づいたものでなければならない。.

新しい!!: 冪乗とアルゴリズム · 続きを見る »

アーベル群

数学、とくに抽象代数学におけるアーベル群(アーベルぐん、abelian group)または可換群(かかんぐん、commutative group)は、群演算が可換な群、すなわちどの二つの元の積も掛ける順番に依らず定まる群を言う。名称は、ノルウェーの数学者ニールス・アーベルに因む。 アーベル群は環や体、環上の加群やベクトル空間といった抽象代数学の概念において、その基礎となる加法に関する群(加法群)としてしばしば生じる。任意の抽象アーベル群についても、しばしば加法的な記法(例えば群演算は "+" を用いて表され、逆元は負符号を元の前に付けることで表す)が用いられ、その場合に用語の濫用で「加法群」と呼ばれることがある。また任意のアーベル群は整数全体の成す環 上の加群とみることができ、その意味でやはり用語の濫用だがアーベル群のことを「加群」と呼ぶこともある。 一般に可換群はに比べて著しく容易であり、とくに有限アーベル群の構造は具さに知られているが、それでも無限アーベル群論はいまなお活発な研究領域である。.

新しい!!: 冪乗とアーベル群 · 続きを見る »

アイザック・ニュートン

ウールスソープの生家 サー・アイザック・ニュートン(Sir Isaac Newton、ユリウス暦:1642年12月25日 - 1727年3月20日、グレゴリオ暦:1643年1月4日 - 1727年3月31日ニュートンの生きていた時代のヨーロッパでは主に、グレゴリオ暦が使われ始めていたが、当時のイングランドおよびヨーロッパの北部、東部ではユリウス暦が使われていた。イングランドでの誕生日は1642年のクリスマスになるが、同じ日がグレゴリオ暦では1643年1月4日となる。二つの暦での日付の差は、ニュートンが死んだときには11日にも及んでいた。さらに1752年にイギリスがグレゴリオ暦に移行した際には、3月25日を新年開始の日とした。)は、イングランドの自然哲学者、数学者、物理学者、天文学者。 主な業績としてニュートン力学の確立や微積分法の発見がある。1717年に造幣局長としてニュートン比価および兌換率を定めた。ナポレオン戦争による兌換停止を経て、1821年5月イングランド銀行はニュートン兌換率により兌換を再開した。.

新しい!!: 冪乗とアイザック・ニュートン · 続きを見る »

エウクレイデス

ラファエロの壁画「アテナイの学堂」に画かれたエウクレイデス アレクサンドリアのエウクレイデス(、、(ユークリッド)、紀元前3世紀? - )は、古代ギリシアの数学者、天文学者とされる。数学史上最も重要な著作の1つ『原論』(ユークリッド原論)の著者であり、「幾何学の父」と称される。 プトレマイオス1世治世下(紀元前323年-283年)のアレクサンドリアで活動した。『原論』は19世紀末から20世紀初頭まで数学(特に幾何学)の教科書として使われ続けた。線の定義について、「線は幅のない長さである」、「線の端は点である」など述べられている。基本的にその中で今日ユークリッド幾何学と呼ばれている体系が少数の公理系から構築されている。エウクレイデスは他に光学、透視図法、円錐曲線論、球面天文学、誤謬推理論、図形分割論、天秤などについても著述を残したとされている。 なお、エウクレイデスという名はギリシア語で「よき栄光」を意味する。その実在を疑う説もあり、その説によると『原論』は複数人の共著であり、エウクレイデスは共同筆名とされる。 確実に言えることは、彼が古代の卓越した数学者で、アレクサンドリアで数学を教えていたこと、またそこで数学の一派をなしたことである。ユークリッド幾何学の祖で、原論では平面・立体幾何学、整数論、無理数論などの当時の数学が公理的方法によって組み立てられているが、これは古代ギリシア数学の一つの成果として受け止められている。.

新しい!!: 冪乗とエウクレイデス · 続きを見る »

カール・フリードリヒ・ガウス

Disquisitiones Arithmeticae のタイトルページ ヨハン・カール・フリードリヒ・ガウス(; Johann Carl Friedrich Gauß, Carolus Fridericus Gauss, 1777年4月30日 - 1855年2月23日)は、ドイツの数学者、天文学者、物理学者である。彼の研究は広範囲に及んでおり、特に近代数学のほとんどの分野に影響を与えたと考えられている。数学の各分野、さらには電磁気など物理学にも、彼の名が付いた法則、手法等が数多く存在する。19世紀最大の数学者の一人である。.

新しい!!: 冪乗とカール・フリードリヒ・ガウス · 続きを見る »

ガロア理論

ア理論(ガロアりろん、Galois theory)は、代数方程式や体の構造を "ガロア群" と呼ばれる群を用いて記述する理論。1830年代のエヴァリスト・ガロアによる代数方程式の冪根による可解性などの研究が由来。ガロアは当時、まだ確立されていなかった群や体の考えを方程式の研究に用いていた。 ガロア理論によれば、“ガロア拡大”と呼ばれる体の代数拡大について、拡大の自己同型群の閉部分群と、拡大の中間体との対応関係を記述することができる。.

新しい!!: 冪乗とガロア理論 · 続きを見る »

クレレ誌

レレ誌もしくは、単にクレレとは数学誌Journal für die reine und angewandte Mathematik (純粋・応用数学雑誌の意)の通称。.

新しい!!: 冪乗とクレレ誌 · 続きを見る »

コンピュータ

ンピュータ(Computer)とは、自動計算機、とくに計算開始後は人手を介さずに計算終了まで動作する電子式汎用計算機。実際の対象は文字の置き換えなど数値計算に限らず、情報処理やコンピューティングと呼ばれる幅広い分野で応用される。現代ではプログラム内蔵方式のディジタルコンピュータを指す場合が多く、特にパーソナルコンピュータやメインフレーム、スーパーコンピュータなどを含めた汎用的なシステムを指すことが多いが、ディジタルコンピュータは特定の機能を実現するために機械や装置等に組み込まれる組み込みシステムとしても広く用いられる。電卓・機械式計算機・アナログ計算機については各項を参照。.

新しい!!: 冪乗とコンピュータ · 続きを見る »

シュレーディンガー方程式

ュレーディンガー方程式(シュレーディンガーほうていしき、Schrödinger equation)とは、物理学の量子力学における基礎方程式である。 シュレーディンガー方程式という名前は、提案者であるオーストリアの物理学者エルヴィン・シュレーディンガーにちなむ。1926年にシュレーディンガーは量子力学の基礎理論に関する一連の論文を提出した。 シュレーディンガー方程式の解は一般的に波動関数と呼ばれる。波動関数はまた状態関数とも呼ばれ、量子系(電子など量子力学で取り扱う対象)の状態を表す。シュレーディンガー方程式は、ある状況の下で量子系が取り得る量子状態を決定し、また系の量子状態が時間的に変化していくかを記述する。あるいは、波動関数を量子系の状態を表すベクトルの成分と見た場合、シュレーディンガー方程式は状態ベクトルの時間発展方程式に置き換えられる。状態ベクトルによる記述は波動関数を用いた場合と異なり物理量の表現によらないため、より一般的である。シュレーディンガー方程式では、波動関数や状態ベクトルによって表される量子系の状態が時間とともに変化するという見方をする。状態が時間変化するという考え方はシュレーディンガー描像と呼ばれる。 シュレーディンガー方程式はその形式によっていくつかの種類に分類される。ひとつの分類は時間依存性で、時間に依存するシュレーディンガー方程式と時間に依存しないシュレーディンガー方程式がある。時間に依存するシュレーディンガー方程式(time-dependent Schrödinger equation; TDSE)は、波動関数の時間的変化を記述する方程式であり、波動関数の変化の仕方は波動関数にかかるハミルトニアンによって決定される。解析力学におけるハミルトニアンは系のエネルギーに対応する関数だったが、量子力学においてはエネルギー固有状態を決定する作用素物理学の文献において作用素は演算子とも呼ばれる。以下では作用素の意味で演算子という語を用いる。である。 時間に依存しないシュレーディンガー方程式(time-independent Schrödinger equation; TISE)はハミルトニアンの固有値方程式である。時間に依存しないシュレーディンガー方程式は、系のエネルギーが一定に保たれる閉じた系に対する波動関数を決定する。 シュレーディンガー方程式のもう1つの分類として、方程式の線型性がある。通常、線型なシュレーディンガー方程式は単にシュレーディンガー方程式と呼ばれる。線型なシュレーディンガー方程式は斉次方程式であるため、方程式の解となる波動関数の線型結合もまた方程式の解となる。 非線型シュレーディンガー方程式(non-linear Schrödinger equation; NLS)は、通常のシュレーディンガー方程式におけるハミルトニアンにあたる部分が波動関数自身に依存する形の方程式である。シュレーディンガー方程式に非線型性が現れるのは例えば、複数の粒子が相互作用する系について、相互作用ポテンシャルを平均場近似することにより一粒子に対するポテンシャルに置き換えることによる。相互作用ポテンシャルが求めるべき波動関数自身に依存する一体ポテンシャルとなる場合、方程式は非線型となる(詳細は例えばハートリー=フォック方程式、グロス=ピタエフスキー方程式などを参照)。本項では主に線型なシュレーディンガー方程式について述べる。.

新しい!!: 冪乗とシュレーディンガー方程式 · 続きを見る »

ゼロ除算

算(ゼロじょざん、division by zero)は、0で除す割り算のことである。このような除算は除される数を a とするならば、形式上は と書くことができるが、数学において、この式と何らかの意味のある値とが結び付けられるかどうかは、数学的な設定にまったく依存している話である。少なくとも通常の実数の体系とその算術においては、意味のある式ではない。 コンピュータなど計算機においても、ゼロ除算に対するふるまいは様々である。たとえば浮動小数点数の扱いに関する標準であるIEEE 754では、数とは異なる無限大を表現するものが結果となる。 しかし、浮動小数点以外の数値型(整数型など)においては多くの場合無限大に相当する値は定義されておらず、またいくつかの除算アルゴリズムの単純な実装(取尽し法など)においては無限ループに陥りかねないなど演算処理の中でも特異なふるまいとなるため、演算前にゼロ除算例外を発生させることで計算そのものを行わせないか、便宜上型が表現できる最大の数値、あるいはゼロを返すなどの特殊な処理とされる場合が多い(後述) 計算尺では、対数尺には0に相当する位置が存在しない(無限の彼方である)ため計算不可能である。.

新しい!!: 冪乗とゼロ除算 · 続きを見る »

タプル

タプルまたはチュープル(tuple)とは、複数の構成要素からなる組を総称する一般概念。 数学や計算機科学などでは通常、順序付けられた対象の並びを表すために用いられる。個別的には、n 個でできた組を英語で「n-tuple」と書き、日本語に訳す場合は通常「n 組」としている。タプルの概念そのものも組と呼ばれる場合がある。なお、 n-tuple は数学のタプルを意味するほか、同様に double、triple などの拡張として倍数詞の表現にも利用される(詳細は「倍#西洋数学における n 倍を表す表現」を参照)。.

新しい!!: 冪乗とタプル · 続きを見る »

冪対象

数学、特に圏論における指数対象(しすうたいしょう、exponential object)は、集合論における配置集合に相当する、圏論的な対象である。指数対象は配置対象(map object; 写像対象)や冪対象(べきたいしょう、power object)とも呼ばれるが、「冪対象」という呼称は、トポス理論において(本項で言うのとは異なり)、冪集合を一般化した概念を表すために用いられるため文脈に注意すべきである。 任意の有限積と指数対象を持つ圏はデカルト閉圏と呼ばれ、理論計算機科学への応用などの観点から重要視されている。.

新しい!!: 冪乗と冪対象 · 続きを見る »

冪乗則

冪乗則(べきじょうそく、power law)は、統計モデルの一つ。最も一般的な冪乗則は、 で表され、定数 c に対して f(cx) \propto f(x) を満たすものである。ここに、a と k は定数、o はランダウの記号である。k はスケーリング指数 (scaling exponent) と呼ばれる。 この関係は、スケール関数の変化に伴い関数の独立変数のスケールが変わると、比例定数は変わるが、関数それ自体の形式は保存されることを意味する。この関係は、両方の変数の対数をとるとより明らかになる。グラフに描けば、両対数グラフにおいて、線型になる。片対数グラフで線型になるのは指数関数。 この式は、この傾きk の線型関係の形をとり、独立変数のスケーリングは、関数の上か下かの移動を誘導し、関数の形と傾きk の両方が変化しない。 確率分布としては、パレート分布やゼータ分布(Zeta distribution)やジップ分布を参照。.

新しい!!: 冪乗と冪乗則 · 続きを見る »

冪函数

数学の特に解析学における冪函数(巾函数、べきかんすう、power function)は、適当な定数 に対して定義される函数 を言う。ここに定数 は、この冪函数の冪指数 (exponent) と呼ばれ、文脈により自然数、整数、有理数、実数、複素数などに値をとることができるが、 の持つ性質によって対応する函数 の自然な定義域が異なってくることに注意が必要である。 冪函数は実変数に対する函数として一般に定義することができる。自然数冪を持つ冪函数は、多項式函数あるいは冪級数の展開の基底を与える。また実数冪を持つ冪函数は物理学、生物学、経済学などにおいて関係するモデルを与える。 複素変数に関して有効な議論も中にはあるが、以下では専ら実変数 に関する冪函数について述べる。またより一般には、上記函数の定数倍 (単項式函数)をも含む意味で冪函数と呼ぶ場合もあるが、本項では常に のみを扱う。.

新しい!!: 冪乗と冪函数 · 続きを見る »

冪剰余

冪剰余(べきじょうよ、英: Modular exponentiation)とは、冪乗の剰余のことである。数論的に重要な概念であるとともに、計算機科学、特に暗号理論の分野での応用が重要である。冪乗剰余とも呼ばれる。 正の整数 (底)の整数 乗(冪指数)を正の整数 (法)で割った余りを、「 を法とした の -冪剰余」と呼ぶ。つまり、冪剰余を求めるとは、次の を計算することに他ならない。 例えば、 の場合、 は を で割った余りなので、冪剰余は となる。 冪指数 に対する -冪剰余は、通常それぞれ平方剰余、立方剰余と呼ばれる。 冪剰余は、指数 が負の場合も定義できる。その場合、 を法として の逆数(モジュラ逆数)となる d によって、 と定義する。 冪剰余 を求める計算は、たとえ巨大な数であっても難しくはない。一方、 が与えられたとき、指数 を求めることは難しい。このような一方向性関数的性質から、冪剰余の暗号での利用についての研究が進んでいる。.

新しい!!: 冪乗と冪剰余 · 続きを見る »

冪級数

数学において、(一変数の)冪級数(べききゅうすう、power series)あるいは整級数(せいきゅうすう、série entière)とは の形の無限級数である。ここで は 番目の項の係数を表し、 は定数である。この級数は通常ある知られた関数のテイラー級数として生じる。 多くの状況において (級数の中心 (center))は である。例えばマクローリン級数を考えるときがそうである。そのような場合には、冪級数は簡単な形 \sum_^\infty a_n x^n.

新しい!!: 冪乗と冪級数 · 続きを見る »

冪集合

冪集合(べきしゅうごう、power set)とは、数学において、与えられた集合から、その部分集合の全体として新たに作り出される集合のことである。べきは冪乗の冪(べき)と同じもので、冪集合と書くのが正確だが、一部分をとった略字として巾集合とも書かれる。 集合と呼ぶべき対象を公理的に構成的に与える公理的集合論では、集合から作った冪集合が集合と呼ばれるべきもののうちにあることを公理の一つ(冪集合公理)としてしばしば提示する。.

新しい!!: 冪乗と冪集合 · 続きを見る »

冪根

冪根「冪」の字の代わりに略字の「巾」を用いることがある。(べきこん)、または累乗根(るいじょうこん)は、冪乗(累乗)に相対する概念で、冪乗すると与えられた数になるような新たな数のことをいう。数 の冪根はしばしば と書き表される。冪根 は以下の関係を満たす。 つまり、冪根 の 乗は に等しく、この意味で を の 乗根 と呼ぶ。 は指数 と呼ばれ、記号 は根号 と呼ばれる。また、根号の中に書かれた数 は時に被開平数 と呼ばれる。 根号を用いて冪根を表す場合、それは非負の値を持つ一価関数として扱われる。このような冪根を主要根 と呼び、特に 乗根の主要根を主平方根 と呼ぶ。 数 の主要根 は指数関数と結び付けられ、 という関係が成り立つ は自然指数関数、 は自然対数。。.

新しい!!: 冪乗と冪根 · 続きを見る »

函数的平方根

数学において函数的平方根(かんすうてきへいほうこん、)あるいは半反復(half iterate)とは、合成の演算に関する函数の平方根のことである。言い換えると、ある函数 の函数的平方根 とは、すべての に対して を満たすもののことを言う。.

新しい!!: 冪乗と函数的平方根 · 続きを見る »

公開鍵暗号

公開鍵暗号(こうかいかぎあんごう、Public-key cryptography)とは、暗号化と復号に別個の鍵(手順)を用い、暗号化の鍵を公開すらできるようにした暗号方式である。 暗号は通信の秘匿性を高めるための手段だが、それに必須の鍵もまた情報なので、鍵を受け渡す過程で盗聴されてしまうというリスクがあった。共通鍵を秘匿して受け渡すには(特使が運搬するというような)コストもかかり、一般人が暗号を用いるための障害であった。この問題に対して、暗号化鍵の配送問題を解決したのが公開鍵暗号である。.

新しい!!: 冪乗と公開鍵暗号 · 続きを見る »

固有値

線型代数学において、線型変換の特徴を表す指標として固有値 (eigenvalue) や固有ベクトル (eigenvector) がある。この2つの用語を合わせて、固有対 (eigenpair) という。与えられた線型変換の固有値および固有ベクトルを求める問題のことを固有値問題 (eigenvalue problem) という。ヒルベルト空間論において線型作用素 あるいは線型演算子と呼ばれるものは線型変換であり、やはりその固有値や固有ベクトルを考えることができる。固有値という言葉は無限次元ヒルベルト空間論や作用素代数におけるスペクトルの意味でもしばしば使われる。.

新しい!!: 冪乗と固有値 · 続きを見る »

C0半群

数学の分野におけるC0-半群(C0-はんぐん、)あるいは強連続1パラメータ半群とは、指数関数のひとつの一般化である。線型のスカラー定数を係数とする常微分方程式の解が指数関数で与えるように、バナッハ空間における線型の定数係数常微分方程式の解は、強連続半群によって与えられる。そのようなバナッハ空間における微分方程式は、例えばや偏微分方程式の分野において現れる。 正式には、強連続半群とは、強作用素位相において連続なバナッハ空間 X 上の半群 (R+,+) の表現である。したがって、厳密に言うと、強連続半群は半群ではなく、むしろ非常に特殊な半群の連続的な表現と言える。.

新しい!!: 冪乗とC0半群 · 続きを見る »

空積

数学における空積(くうせき、empty product)あるいは零項積 (nullary product) は、 個の因子を掛けた結果である。(考えている乗法演算に単位元が存在する場合に限り)「空積の値は単位元 1 に等しい」という規約を設ける。このことは、空和(すなわち0個の数を足した結果)が零元 0 に等しいと約束することと同様である。 用語 "空積" は算術的演算を議論するときに上の意味で使われることが多い。しかしながら、この用語は集合論の共通部分、圏論の積、コンピュータプログラミングにおける積に対しても使われる。これらは以下で議論される。.

新しい!!: 冪乗と空積 · 続きを見る »

立方数

立方数(りっぽうすう、cubic number)とは、ある数 n の三乗(立方)となる数である。例えば 125 は 53 であるので立方数である。自然数の最小の立方数は 1 であり、小さい順に列記すると 個数が立方数である点を縦、横、高さの三方向に等間隔に並べることで正六面体(立方体)の形を作れることから、「六面数」と呼ばれることもある。例えば216個の点は縦、横、高さの一辺にそれぞれ6個ずつ並べることで正六面体の形を作ることができる。.

新しい!!: 冪乗と立方数 · 続きを見る »

符号

モールス符号 符号理論において、符号(ふごう)またはコード(code)とは、シンボルの集合S, Xがあるとき、Sに含まれるシンボルのあらゆる系列から、Xに含まれるシンボルの系列への写像のことである。Sを情報源アルファベット、Xを符号アルファベットという。すなわち符号とは、情報の断片(例えば、文字、語、句、ジェスチャーなど)を別の形態や表現へ(ある記号から別の記号へ)変換する規則であり、変換先は必ずしも同種のものとは限らない。 コミュニケーションや情報処理において符号化(エンコード)とは、情報源の情報を伝達のためのシンボル列に変換する処理である。復号(デコード)はその逆処理であり、符号化されたシンボル列を受信者が理解可能な情報に変換して戻してやることを指す。 符号化が行われるのは、通常の読み書きや会話などの言語によるコミュニケーションが不可能な場面でコミュニケーションを可能にするためである。例えば、手旗信号や腕木通信の符号も個々の文字や数字を表していることが多い。遠隔にいる人がその手旗や腕木を見て、本来の言葉などに戻して解釈することになる。.

新しい!!: 冪乗と符号 · 続きを見る »

算法 (数学)

算法(さんぽう)には次の用法がある。.

新しい!!: 冪乗と算法 (数学) · 続きを見る »

算数

算数(さんすう、elementary mathematics)は 日本の小学校における教科の一つ。広義には各国の初等教育における一分野も指す。 この項では便宜を考慮して各国の初等教育(中でも小学校に相当する学校)における、算数に相当する教科について広く解説する。.

新しい!!: 冪乗と算数 · 続きを見る »

素数

素数(そすう、prime number)とは、 より大きい自然数で、正の約数が と自分自身のみであるもののことである。正の約数の個数が である自然数と言い換えることもできる。 より大きい自然数で素数でないものは合成数と呼ばれる。 一般には、素数は代数体の整数環の素元として定義される(そこでは反数などの同伴なものも素数に含まれる)。このため、有理整数環 \mathbb Z での素数は有理素数(ゆうりそすう、rational prime)と呼ばれることもある。 最小の素数は である。素数は無数に存在する。したがって、素数からなる無限数列が得られる。 素数が無数に存在することは、紀元前3世紀頃のユークリッドの著書『原論』で既に証明されていた。 自然数あるいは実数の中での素数の分布の様子は高度に非自明で、リーマン予想などの現代数学の重要な問題との興味深い結び付きが発見されている。 分散コンピューティング・プロジェクト GIMPS により、史上最大の素数の探求が行われている。2018年1月現在で知られている最大の素数は、2017年12月に発見された、それまでに分かっている中で50番目のメルセンヌ素数 であり、十進法で表記したときの桁数は2324万9425桁に及ぶ。.

新しい!!: 冪乗と素数 · 続きを見る »

線型代数学

線型代数学(せんけいだいすうがく、linear algebra)とは、線型空間と線型変換を中心とした理論を研究する代数学の一分野である。現代数学において基礎的な役割を果たし、幅広い分野に応用されている。また、これは特に行列・行列式・連立一次方程式に関する理論を含む。線形などの用字・表記の揺れについては線型性を参照。 日本の大学においては、多くの理系学部学科で解析学(微分積分学)とともに初学年から履修する。なお、高校教育においては平成27年度からの新課程では行列の分野が除外されている。.

新しい!!: 冪乗と線型代数学 · 続きを見る »

群 (数学)

数学における群(ぐん、group)とは最も基本的と見なされる代数的構造の一つである。群はそれ自体興味深い考察対象であり、群論における主要な研究対象となっているが、数学や物理学全般にわたってさまざまな構成に対する基礎的な枠組みを与えている。.

新しい!!: 冪乗と群 (数学) · 続きを見る »

群論

群論(ぐんろん、group theory)とは、群を研究する学問。 群の概念は抽象代数学における中心的な概念。 環・体・ベクトル空間などは、演算や公理が付与された群と看做すことができる。 群論の方法は代数学の大部分に強い影響を与えている。 線形代数群とリー群の理論は群論の一分野。 特に発展を遂げており、独自の適用範囲を持っている。 結晶や、水素原子などの構造の多くは、対称性の群(symmetry group)で表現できる。このように、群論は、物理学や化学の中に多くの実例・応用例がある。 1960年代~80年代に発表された総計1万ページを超える論文によって、完全な有限単純群の分類が達成された。これは多くの数学者の共同作業の賜物であり、20世紀の数学の最も重要な業績の一つ。.

新しい!!: 冪乗と群論 · 続きを見る »

結合法則

数学、殊に代数学における結合法則(けつごうほうそく、associative law) 、結合則、結合律あるいは演算の結合性(けつごうせい、associativity)は二項演算に対して考えられる性質の一つ。ひとつの数式にその演算の演算子が2個以上並んでいる時、その演算子について、左右どちらの側が優先されるかに関わらず結果が同じになるような演算は結合的 (associative) である。.

新しい!!: 冪乗と結合法則 · 続きを見る »

環 (数学)

数学における環(かん、ring)は、台集合に「加法」(和)および「乗法」(積)と呼ばれる二種類の二項演算を備えた代数系になっており、最もよく知られた環の例は、整数全体の成す集合に自然な加法と乗法を考えたものである(これは乗法が可換だから可換環の例でもある)。ただし、それが環と呼ばれるためには、環の公理として、加法は可換で、加法と乗法はともに結合的であって、乗法は加法の上に分配的で、各元は加法逆元をもち、加法単位元が存在すること、が全て要求される。従って、台集合は加法のもと「加法群」と呼ばれるアーベル群を成し、乗法のもと「乗法半群」と呼ばれる半群であって、乗法は加法に対して分配的であり、またしばしば乗法単位元を持つ乗法に関しては半群となることのみを課す(乗法単位元の存在を要求しない)こともある。定義に関する注意節を参照。なお、よく用いられる環の定義としていくつか流儀の異なるものが存在するが、それについては後述する。 環について研究する数学の分野は環論として知られる。環論学者が研究するのは(整数環や多項式環などの)よく知られた数学的構造やもっと他の環論の公理を満足する多くの未だよく知られていない数学的構造のいずれにも共通する性質についてである。環という構造のもつ遍在性は、数学の様々な分野において同時多発的に行われた「代数化」の動きの中心原理として働くことになった。 また、環論は基本的な物理法則(の根底にある特殊相対性)や物質化学における対称現象の理解にも寄与する。 環の概念は、1880年代のデデキントに始まる、フェルマーの最終定理に対する証明の試みの中で形成されていった。他分野(主に数論)からの寄与もあって、環の概念は一般化されていき、1920年代のうちにエミー・ネーター、ヴォルフガング・クルルらによって確立される。活発に研究が行われている数学の分野としての現代的な環論では、独特の方法論で環を研究している。すなわち、環を調べるために様々な概念を導入して、環をより小さなよく分かっている断片に分解する(イデアルをつかって剰余環を作り、単純環に帰着するなど)。こういった抽象的な性質に加えて、環論では可換環と非可換環を様々な点で分けて考える(前者は代数的数論や代数幾何学の範疇に属する)。特に豊かな理論が展開された特別な種類の可換環として、可換体があり、独自に体論と呼ばれる分野が形成されている。これに対応する非可換環の理論として、非可換可除環(斜体)が盛んに研究されている。なお、1980年代にアラン・コンヌによって非可換環と幾何学の間の奇妙な関連性が指摘されて以来、非可換幾何学が環論の分野として活発になってきている。.

新しい!!: 冪乗と環 (数学) · 続きを見る »

点ごとの積

2つの関数の点ごとの積は、定義域の各値における2つの関数の像を掛けることで得られる別の関数である。 と がともに定義域が で終域が の関数で、 の元が掛けることができるとき(例えば は数からなる集合)、 と の点ごとの積は から への を に写す別の関数である。.

新しい!!: 冪乗と点ごとの積 · 続きを見る »

熱伝導

熱伝導(ねつでんどう、英語: thermal conduction)は、物質の移動を伴わずに高温側から低温側へ熱が伝わる移動現象のひとつである。固体中では、熱伝導は原子の振動及びが担う。特に、金属においては、.

新しい!!: 冪乗と熱伝導 · 続きを見る »

直積集合

数学において、集合のデカルト積(デカルト­せき、Cartesian product)または直積(ちょくせき、direct product)、直積集合、または単に積(せき、product)、積集合は、集合の集まり(集合族)に対して各集合から一つずつ元をとりだして組にしたもの(元の族)を元として持つ新たな集合である。 具体的に二つの集合 に対し、それらの直積とはそれらの任意の元 の順序対 全てからなる集合をいう。 では と書くことができる。有限個の集合の直積 も同様のn-組からなる集合として定義されるが、二つの集合の直積を入れ子 (nested) にして、 と帰納的に定めることもできる。.

新しい!!: 冪乗と直積集合 · 続きを見る »

Disquisitiones Arithmeticae

Disquisitiones Arithmeticae(ディスクィジティオネス・アリトメティカエ、ラテン語で算術研究の意、以下 D. A. と略す)は、カール・フリードリヒ・ガウス唯一の著書にして、後年の数論の研究に多大な影響を与えた書物である。1801年、ガウス24歳のときに公刊された。その研究の端緒はガウス17歳の1795年にまでさかのぼり、1797年にはほぼ原稿は完成していた。 ラテン語の arithmetica(アリトメティカ)は通常「算術」と訳されるが、ガウスの意図したものは、今日「数論」もしくは「整数論」と呼ばれる学術的領域である高瀬 1995、pp.

新しい!!: 冪乗とDisquisitiones Arithmeticae · 続きを見る »

違いを除いて

数学の文脈における「—(の違い)を除いて…」 (… "up to" &mdash) という語句は、「— に関する差異を無視する」ことを意味する専門用語である。この言い回しの意味するところは、「適当な目的のもとでは、あるひとつの同値類に属する元全体を、何か単一の実体を表すものとみなせる」ということである。"—" の部分には、何らかの性質や、同じ同値類に属する元(つまり一方は他方に同値となるような元)の間の変換の過程を記述する内容が入る。 たとえば不定積分を計算するとき、その結果は「定数項の違いを除いて」 f(x) であるというように言うことができる。その意味は、f(x) 以外に不定積分 g(x) があったとしても g(x).

新しい!!: 冪乗と違いを除いて · 続きを見る »

順序数

数学でいう順序数(じゅんじょすう、ordinal number)とは、整列集合同士の"長さ"を比較するために、自然数を拡張させた概念である。.

新しい!!: 冪乗と順序数 · 続きを見る »

行列

数学の線型代数学周辺分野における行列(ぎょうれつ、matrix)は、数や記号や式などを行と列に沿って矩形状に配列したものである。行の数と列の数が同じ行列はが成分ごとの計算によって与えられる。行列の積の計算はもっと複雑で、2 つの行列がかけ合わせられるためには、積の左因子の列の数と右因子の行の数が一致していなければならない。 行列の応用として顕著なものは一次変換の表現である。一次変換は のような一次関数の一般化で、例えば三次元空間におけるベクトルの回転などは一次変換であり、 が回転行列で が空間の点の位置を表す列ベクトル(1 列しかない行列)のとき、積 は回転後の点の位置を表す列ベクトルになる。また 2 つの行列の積は、2 つの一次変換の合成を表現するものとなる。行列の別な応用としては、連立一次方程式の解法におけるものである。行列が正方行列であるならば、そのいくつかの性質は、行列式を計算することによって演繹することができる。例えば、正方行列が正則であるための必要十分条件は、その行列式の値が非零となることである。固有値や固有ベクトルは一次変換の幾何学に対する洞察を与える。行列の応用は科学的な分野の大半に及び、特に物理学において行列は、電気回路、光学、量子力学などの研究に利用される。コンピュータ・グラフィックスでは三次元画像の二次元スクリーンへの投影や realistic-seeming motion を作るのに行列が用いられる。は、古典的な解析学における微分や指数関数の概念を高次元へ一般化するものである。 主要な数値解析の分野は、行列計算の効果的なアルゴリズムの開発を扱っており、主題は何百年にもわたって今日では研究領域も広がっている。行列の分解は、理論的にも実用的にも計算を単純化するもので、アルゴリズムは正方行列や対角行列などといった行列の特定の構造に合わせて仕立てられており、有限要素法やそのほかの計が効率的に処理される。惑星運動論や原子論では無限次行列が現れる。関数のテイラー級数に対して作用する微分の表現行列は、無限次行列の簡単な例である。.

新しい!!: 冪乗と行列 · 続きを見る »

行列の乗法

数学において、行列の対から別の行列を作り出す二項演算としての行列の乗法は、実数や複素数などの数が初等的な四則演算でいうところの乗法を持つことと対照的に、そのような「数の配列」の間の乗法として必ずしも一意的な演算を指しうるものではない。そのような意味では、一般に「行列の乗法」は幾つかの異なる二項演算を総称するものと考えることができる。行列の乗法の持つ重要な特徴には、与えられた行列の行および列の数(行列の型やサイズあるいは次元と呼ばれるもの)が関係して、得られる行列の成分がどのように特定されるかが述べられるということが挙げられる。 例えば、ベクトルの場合と同様に、任意の行列に対してスカラーを掛けるという操作が、その行列の全ての成分に同じ数を掛けるという方法で与えられる。また、の場合と同様に、同じサイズの行列に対して成分ごとの乗法を入れることによって定まる行列の積はアダマール積と呼ばれる。それ以外にも、二つの行列のクロネッカー積は区分行列として得られる。 このようにさまざまな乗法が定義できるという事情の中にあっても、しかし最も重要な行列の乗法は連立一次方程式やベクトルの一次変換に関するもので、応用数学や工学へも広く応用がある。これは通例、行列の積(ぎょうれつのせき、matrix product)と呼ばれるもので、 が 行列で、 が 行列ならば、それらの行列の積 が 行列として与えられ、その成分は の各行の 個の成分がそれぞれ順番に の各列の 個の成分と掛け合わされる形で与えられる(後述)。 この通常の積は可換ではないが、結合的かつ行列の加法に対して分配的である。この行列の積に関する単位元(数において を掛けることに相当するもの)は単位行列であり、正方行列は逆行列(数における逆数に相当)を持ち得る。行列の積に関して行列式は乗法的である。一次変換や行列群あるいは群の表現などの理論を考える上において行列の積は重要な演算となる。 行列のサイズが大きくなれば、二つあるいはそれ以上の行列の積の計算を定義に従って行うには、非常に膨大な時間が掛かるようになってしまうため、効果的に行列の積を計算できるアルゴリズムが考えられてきた。.

新しい!!: 冪乗と行列の乗法 · 続きを見る »

行列環

抽象代数学において、行列環 (matrix ring) は、および行列の乗法のもとで環をなす、行列の任意の集まりである。別の環を成分に持つ n×n 行列全体の集合や無限次行列環 (infinite matrix ring) をなす無限次行列のある部分集合は行列環である。これらの行列環の任意の部分環もまた行列環である。 R が可換環のとき、行列環 Mn(R) は行列多元環 (matrix algebra) と呼ばれる結合多元環である。この状況において、M が行列で r が R の元であれば、行列 Mr は行列 M の各成分に r をかけたものである。 行列環は単位元をもたない環上作ることができるが、終始 R は単位元 1 ≠ 0 をもつ結合的環であると仮定する。.

新しい!!: 冪乗と行列環 · 続きを見る »

複素数

数学における複素数(ふくそすう、complex number)は、実数の対 と と線型独立な(実数ではない)要素 の線型結合 の形に表される数(二元数: 実数体上の二次拡大環の元)で、基底元 はその平方が になるという特別な性質を持ち虚数単位と呼ばれる。 複素数全体の成す集合を太字の あるいは黒板太字で と表す。 は、実数全体の成す集合 と同様に、可換体の構造を持ち、とくに を含む代数閉体を成す。複素数体はケイリー–ディクソン代数(四元数、八元数、十六元数など)の基点となる体系であり、またさまざまな超複素数系の中で最もよく知られた例である。 複素数の概念は、一次元の実数直線を二次元の複素数平面に拡張する。複素数は自然に二次元平面上に存在すると考えることができるから、複素数全体の成す集合上に自然な大小関係(つまり全順序)をいれることはできない。すなわち は順序体でない。 ある数学的な主題や概念あるいは構成において、それが複素数体を基本の体構造として考えられているとき、そのことはしばしばそれら概念等の名称に(おおくは接頭辞「複素-」を付けることで)反映される。例えば、複素解析、複素行列、複素(係数)多項式、複素リー代数など。.

新しい!!: 冪乗と複素数 · 続きを見る »

誤った数学的推論

証明などの数学的記述において、数学的根拠を欠いた適切でない推測を用いた誤った推論(あやまったすいろん、fallacy; 誤謬)から導かれる結論は、一見して有り得ない状況に逢着することも多く、ときには結論だけ取り出せば正しいことがありうるとしても、議論全体としては完全に破綻している。.

新しい!!: 冪乗と誤った数学的推論 · 続きを見る »

部分群の指数

数学、とくに群論において、群 G における部分群 H の指数 (index) は G における H の「相対的な大きさ」である。同じことだが、G を埋め尽くす H の「コピー」(剰余類) の個数である。例えば、H が G において指数 2 をもてば、直感的には G の元の「半分」は H の元である。H の G における指数は通常 |G: H| あるいは あるいは (G:H) で表記される。 正式には、H の G における指数は H の G における剰余類の個数として定義される。(H の G における左剰余類の個数はつねに右剰余類の個数と等しい。)例えば、Z を整数のなす加法群とし、2Z を偶数全体からなる Z の部分群とする。すると 2Z は Z において2つの剰余類(すなわち偶数全体と奇数全体)をもち、したがって 2Z の Z における指数は 2 である。一般化すると、任意の正の整数 n に対して である。 N が G の正規部分群であれば、G における N の指数はまた商群 G / N の位数にも等しい、なぜならばこれは G における N の剰余類の集合における群構造の言葉で定義されるからである。 G が無限であれば、部分群 H の指数は一般には 0 でない基数になる。上の例が示すように、それは有限 - つまり、正の整数 - かもしれない。 G と H が有限群であれば、H の G における指数は 2 つの群の位数の商に等しい: これはラグランジュの定理であり、この場合商は必ず正の整数である。.

新しい!!: 冪乗と部分群の指数 · 続きを見る »

自乗

自乗(じじょう)とは、ある数を自らと掛ける演算、あるいは演算によって得られる数を指す。二乗(にじょう、じじょう)、平方(へいほう、square)とも呼ばれる。自乗は指数 2 の冪算に等しいため、自乗は冪算の特殊な場合と見なされる。 自乗が平方と呼ばれるのはその幾何学的な意味に由来する。数を辺の長さによって表現すれば、その数の自乗は自乗される数に等しい辺の長さを持つ正方形の面積を与える。.

新しい!!: 冪乗と自乗 · 続きを見る »

自然対数

実解析において実数の自然対数(しぜんたいすう、natural logarithm)は、超越的無理数であるネイピアの定数 を底とする対数を言う。 の自然対数を や、より一般に あるいは単に(底を暗に伏せて) などと書く。 通常の函数の記法に則って引数を指示する丸括弧を明示的に付けて、 や などのように書いてもよい 定義により、 の自然対数とは の肩にそれを載せた冪が 自身に一致するような冪指数のことに他ならない。例えば、 となることは となることを理由とする。特に の自然対数は であり、 の自然対数は である。 自然対数は、任意の正数 に対して 逆数函数 の から までの間のグラフの下にある面積( と の成立を意味する。 他の任意の対数がそうであるように、自然対数は なる意味で乗法を加法へ写す。これにより自然対数函数は正の実数の乗法群 から実数の加法群 への写像 として 群の準同型になる。 以外にも、任意の正数 に対して、それを底とする対数を定義することができるが、そのような対数は自然対数の定数倍として得ることができる(例えば二進対数は自然対数の 倍である)し、通常はそうして自然対数から定義される。対数は未知の量がほかの適当な量の冪と見なされる問題を解く際に有用で、例えば指数函数的減衰問題における減衰定数としての半減期を求めるときなどに利用できる。このように対数は、数学や自然科学の多くの分野において重要であり、また金融経済において複利を含む問題にも利用できる。 リンデマン–ヴァイアシュトラスの定理により、 でない任意の(正の)代数的数に対してその自然対数は超越数となる。.

新しい!!: 冪乗と自然対数 · 続きを見る »

自然数

自然数(しぜんすう、natural number)とは、個数、もしくは順番を表す一群の数のことである。集合論においては、自然数は物の個数を数える基数のうちで有限のものであると考えることもできるし、物の並べ方を示す順序数のうちで有限のものであると考えることもできる。 自然数を 1, 2, 3, … とする流儀と、0, 1, 2, 3, … とする流儀があり、前者は数論などでよく使われ、後者は集合論、論理学などでよく使われる(詳しくは自然数の歴史と零の地位の節を参照)。いずれにしても、0 を自然数に含めるかどうかが問題になるときは、その旨を明記する必要がある。自然数の代わりに非負整数または正整数と言い換えることによりこの問題を避けることもある。 数学の基礎付けにおいては、自然数の間の加法についての形式的な逆元を考えることによって整数を定義する。正の整数ないしは負でない整数を自然数と同一視し、自然数を整数の一部として取扱うことができる。自然数と同様に整数の全体も可算無限集合である。 なお、文脈によっては、その一群に属する個々の数(例えば 3 や 18)を指して自然数ということもある。.

新しい!!: 冪乗と自然数 · 続きを見る »

配置集合

数学の集合論における配置集合(はいちしゅうごう、Belegungsmenge)あるいは集合の冪(べき、exponentiation ensembliste)は、二つの集合 に対する演算で、 から への写像全体の集合を割り当てるものである。この集合は や などと書かれる。これはまた、 で添字付けられた の元の族の全体 F^E.

新しい!!: 冪乗と配置集合 · 続きを見る »

英語

アメリカ英語とイギリス英語は特徴がある 英語(えいご、)は、イ・ヨーロッパ語族のゲルマン語派に属し、イギリス・イングランド地方を発祥とする言語である。.

新しい!!: 冪乗と英語 · 続きを見る »

離散対数

代数学における離散対数(りさんたいすう、discrete logarithm)とは、通常の対数の群論的な類似物である。 離散対数を計算する問題は整数の因数分解(en:integer factorization)と以下の点が共通している:.

新しい!!: 冪乗と離散対数 · 続きを見る »

集合

数学における集合 (しゅうごう、set, ensemble, Menge) とは、大雑把に言えばいくつかの「もの」からなる「集まり」である。集合を構成する個々の「もの」のことを元 (げん、; 要素) という。 集合は、集合論のみならず現代数学全体における最も基本的な概念の一つであり、現代数学のほとんどが集合と写像の言葉で書かれていると言ってよい。 慣例的に、ある種の集合が系 (けい、) や族 (ぞく、) などと呼ばれることもある。実際には、これらの呼び名に本質的な違いはないが細かなニュアンスの違いを含むと考えられている。たとえば、方程式系(「相互に連立する」方程式の集合)、集合族(「一定の規則に基づく」集合の集合)、加法族(「加法的な性質を持つ」集合族)など。.

新しい!!: 冪乗と集合 · 続きを見る »

集合の圏

数学の一分野である圏論において、集合の圏(しゅうごうのけん、category of sets)Set (あるいは \mathcal などとも書く) は、その対象の成す類が集合全体の成す類であるような圏である。ただし、対象の間の射の類は、集合 に対して を任意の写像とするとき、 の形に書ける三つ組全体の成す集合によって与えられる。.

新しい!!: 冪乗と集合の圏 · 続きを見る »

集合論

集合論(しゅうごうろん、set theory, théorie des ensembles, Mengenlehre)は、集合とよばれる数学的対象をあつかう数学理論である。 通常、「集合」はいろいろな数学的対象の集まりを表していると見なされる。これは日常的な意味でのものの集まりやその要素、特定のものが入っているかいないか、という概念を包摂している。現代数学の定式化においては集合論がさまざまな数学的対象を描写する言葉をあたえている。(論理や述語論理とともに)集合論は数学の公理的な基礎付けをあたえ、数学的な対象を形式的に(無定義語の)「集合」と「帰属関係」によって構成することが可能になる。また、集合論の公理として何を仮定するとどんな体系が得られるか、といった集合それ自体の研究も活発に行われている。 集合論における基本的な操作には、あたえられた集合のべき集合や直積集合をとる、などがある。また二つの集合の元同士の関係(二項関係)を通じて定義される順序関係や写像などの概念が集合の分類に重要な役割を果たす。集合論では二つの集合はそれぞれの集合の元の間に全単射が存在するとき濃度が等しいという。そこで集合を濃度の等しさによって類別した各々の同値類のことを濃度という。この定義では濃度は真のクラスになってしまうので、濃度そのものを集合論的な対象として取り扱い難い。選択公理を仮定すると任意の集合は整列可能であることが導かれる。整列集合の順序型を順序同型で類別した各々の同値類と定義してしまうと、それは真のクラスとなってしまう。幸いなことに任意の整列集合は順序数と呼ばれる特別な集合(を帰属関係で順序付けしたもの)と順序同型となる。そのためそれら順序数を整列集合の順序型と定義することができる。また順序数全体 \mathrm(これは真のクラスになる)もまた整列順序付けられている。以上のもとで、集合の濃度を と定義することができる。すなわち濃度というのを特別な順序数として定義するわけである。このようにすることで濃度の定義から真のクラスを追放することができる。ただし選択公理を仮定することなく濃度を定義し取り扱うことはできる。基本的なアイデアは濃度で類別した各々同値類から累積階層の意味で階数が最小なものだけを分出するというものである。詳細はを参照。.

新しい!!: 冪乗と集合論 · 続きを見る »

逆三角関数

数学において、逆三角関数(ぎゃくさんかくかんすう、inverse trigonometric function、時折 )は(関数の定義域を適切に制限した)三角関数の逆関数である。具体的には、それらは正弦 、余弦 、正接 、余接 、正割 、余割 関数の逆関数である。それらは角度の三角比の任意から角度を得るために使われる。逆三角関数は工学、航法、物理学、幾何学において広く使われる。.

新しい!!: 冪乗と逆三角関数 · 続きを見る »

逆写像

数学における逆写像(ぎゃくしゃぞう、inverse mapping)は一口に言えば写像の与える元の対応関係を「反対」にして得られる写像である。すなわち、写像 が を に写すならば、 の逆写像は を に写し戻す。 函数と呼ばれる種類の写像の逆写像は、逆函数 (inverse function) と呼ばれる。.

新しい!!: 冪乗と逆写像 · 続きを見る »

逆元

逆元 (ぎゃくげん、)とは、数学、とくに抽象代数学において、数の加法に対する反数や乗法に関する逆数の概念の一般化で、直観的には与えられた元に結合してその効果を「打ち消す」効果を持つ元のことである。逆元のきちんとした定義は、考える代数的構造によって少し異なるものがいくつか存在するが、群を考える上ではそれらの定義する概念は同じものになる。.

新しい!!: 冪乗と逆元 · 続きを見る »

逆数

逆数(ぎゃくすう、reciprocal)とは、ある数に掛け算した結果が となる数である。すなわち、数 の逆数 とは次のような関係を満たす。 通常、 の逆数は分数の記法を用いて のように表されるか、冪の記法を用いて のように表される。 を乗法に関する単位元と見れば、逆数とは乗法逆元(じょうほうぎゃくげん、multiplicative inverse)の一種であり、乗法逆元とは一般化された逆数である。 上述の式から明らかなように、 と の役割を入れ替えれば、 は の逆数であると言える。従って、 の逆数が であるとき の逆数は である。 が である場合、任意の数との積は になるため、(0 ≠ 1 であれば) に対する逆数は存在しない。 また、任意の について必ずしもその逆数が存在するとは限らない。たとえば、自然数の範囲では上述の関係を満たす数は 以外には存在しない。 を除く任意の数 について逆数が常に存在するようなものには、有理数や実数、複素数がある。これらのように四則演算が自由にできる集合を体と呼ぶ。 逆数は乗法における逆元であるが、加法における逆元として反数がある。 1つの二項演算を持つ集合であって左右の逆元が常に存在するもの(代数的構造)はと呼ばれる。.

新しい!!: 冪乗と逆数 · 続きを見る »

除法

法(じょほう、division)とは、乗法の逆演算であり四則演算のひとつに数えられる二項演算の一種である。除算、割り算とも呼ばれる。 除法は ÷ や /, % といった記号を用いて表される。除算する 2 つの数のうち一方の項を被除数 (dividend) と呼び、他方を除数 (divisor) と呼ぶ。有理数の除法について、その演算結果は被除数と除数の比を与え、分数を用いて表すことができる。このとき被除数は分子 (numerator)、除数は分母 (denominator) に対応する。被除数と除数は、被除数の右側に除数を置いて以下のように表現される。 除算は商 (quotient) と剰余 (remainder) の 2 つの数を与え、商と除数の積に剰余を足したものは元の被除数に等しい。 剰余は余りとも呼ばれ、除算によって「割り切れない」部分を表す。剰余が 0 である場合、「被除数は除数を割り切れる」と表現され、このとき商と除数の積は被除数に等しい。剰余を具体的に決定する方法にはいくつかあるが、自然数の除法については、剰余は除数より小さくなるように取られる。たとえば、 を で割った余りは 、商は となる。これらの商および剰余を求める最も原始的な方法は、引けるだけ引き算を行うことである。つまり、 を で割る例では、 から を 1 回ずつ引いていき()、引かれる数が より小さくなるまで引き算を行ったら、その結果を剰余、引き算した回数を商とする。これは自然数の乗法を足し算によって行うことと逆の関係にある。 剰余を与える演算に % などの記号を用いる場合がある。 除数が である場合、除数と商の積は必ず になるため商を一意に定めることができない。従ってそのような数 を除数とする除法の商は未定義となる(ゼロ除算を参照)。 有理数やそれを拡張した実数、複素数における除法では、整数や自然数の除法と異なり剰余は用いられず、 という関係が除数が 0 の場合を除いて常に成り立つ。この関係は次のようにも表すことができる。 実数などにおける定義から離れると、除法は乗法を持つ代数的構造について「乗法の逆元を掛けること」として一般化することができる。一般の乗法は交換法則が必ずしも成り立たないため、除法も左右 2 通り考えられる。.

新しい!!: 冪乗と除法 · 続きを見る »

RSA暗号

RSA暗号とは、桁数が大きい合成数の素因数分解問題が困難であることを安全性の根拠とした公開鍵暗号の一つである。 暗号とデジタル署名を実現できる方式として最初に公開されたものである。.

新しい!!: 冪乗とRSA暗号 · 続きを見る »

抽象代数学

抽象代数学 (ちゅうしょうだいすうがく、abstract algebra) とは、群、環、体、加群、ベクトル空間や線型環のように公理的に定義される代数的構造に関する数学の研究の総称である。.

新しい!!: 冪乗と抽象代数学 · 続きを見る »

技術評論社

株式会社技術評論社(ぎじゅつひょうろんしゃ)は、日本の出版社。主にコンピュータ関連の書籍・雑誌を発行している。.

新しい!!: 冪乗と技術評論社 · 続きを見る »

極限

数学においては、数列など、ある種の数学的対象をひとまとまりに並べて考えたものについての極限(きょくげん、limit)がしばしば考察される。数の列がある値に限りなく近づくとき、その値のことを数列の極限あるいは極限値といい、この数列は収束するという。収束しない場合は、発散するという。 極限を表す記号として、次のような lim (英語:limit, リミット、ラテン語:limes)という記号が一般的に用いられる。.

新しい!!: 冪乗と極限 · 続きを見る »

標数

標数(ひょうすう、characteristic)は、環あるいは体の特徴を表す非負整数のひとつ。整域の標数は 0 または素数に限られる。.

新しい!!: 冪乗と標数 · 続きを見る »

江戸時代

江戸時代(えどじだい)は、日本の歴史において徳川将軍家が日本を統治していた時代である。徳川時代(とくがわじだい)とも言う。この時代の徳川将軍家による政府は、江戸幕府(えどばくふ)あるいは徳川幕府(とくがわばくふ)と呼ぶ。 藩政時代(はんせいじだい)という別称もあるが、こちらは江戸時代に何らかの藩の領土だった地域の郷土史を指す語として使われる例が多い。.

新しい!!: 冪乗と江戸時代 · 続きを見る »

波動方程式

波動方程式(はどうほうていしき、wave equation)とは、 で表される定数係数二階線型偏微分方程式の事を言う。 は波動の位相速度 (phase velocity) を表す係数である。波動方程式は振動、音、光、電磁波など振動・波動現象を記述するにあたって基本となる方程式である。.

新しい!!: 冪乗と波動方程式 · 続きを見る »

添字表記法

数学およびプログラミングにおける添字表記法(そえじひょうきほう、index notation; 指数記法)あるいは添字記法とは、行列のような配列の特定の要素を示すために用いられる記法である。添字の用い方はそれを与える対象によって異なる。リスト、ベクトル、行列などデータ構造の違いによって、あるいは数学の論文を書くか、計算機のプログラムを書くかによってもその用法は異なる。.

新しい!!: 冪乗と添字表記法 · 続きを見る »

演算子の優先順位

演算子の優先順位とは、数学およびコンピュータプログラミングにおいて、数式のどの部分から先に計算すべきかを明確化する規則である。 例えば、数学や多くのコンピュータ言語では乗法は加法より先に行われる。2 + 3 × 4 という式の計算結果は14になる。(と)、、 といった括弧には計算順序の混乱を防ぐ独自の規則が適用され、例えば先の式は 2 + (3 × 4) とも書けるが、括弧がなくとも乗法が優先されるという規則だけで式の値は一意に定まる。 代数学的記法が導入された際、乗法が加法より優先されるようになった。したがって、3 + 4 × 5.

新しい!!: 冪乗と演算子の優先順位 · 続きを見る »

指数 (初等整数論)

初等整数論における指数(しすう、index)は、解析学における指数関数・対数関数の概念の類似物である。標数と呼ばれることもある。.

新しい!!: 冪乗と指数 (初等整数論) · 続きを見る »

指数関数

実解析における指数関数(しすうかんすう、exponential function)は、冪における指数 を変数として、その定義域を主に実数の全体へ拡張して定義される初等超越関数の一種である。対数関数の逆関数であるため、逆対数 と呼ばれることもある。自然科学において、指数関数は量の増加度に関する数学的な記述を与えるものとして用いられる(や指数関数的減衰の項を参照)。 一般に、 かつ なる定数 に関して、(主に実数の上を亙る)変数 を へ送る関数は、「a を'''底'''とする指数函数」と呼ばれる。「指数関数」との名称は、与えられた底に関して冪指数を変数とする関数であることを示唆するものであり、冪指数を固定して底を独立変数とする冪関数とは対照的である。 しばしば、より狭義の関数を意図して単に「指数関数」と呼ぶこともある。そのような標準的な (the) 指数関数(あるいはより明示的に「自然指数関数」)はネイピア数 を底とする関数 である。これを のようにも書く。この関数は、導関数が自分自身に一致するなど、他の指数関数と比べて著しい性質を持つ。底 を他の底 に取り換えるには自然対数 を用いて、等式 を適用すればよいから、以下本項では主に自然指数関数について記述し、多くの場合「指数関数」は自然指数関数の意味で用いる。.

新しい!!: 冪乗と指数関数 · 続きを見る »

有理数

有理数(ゆうりすう、rational number) とは、二つの整数 a, b (ただし b は 0 でない)をもちいて a/b という分数で表せる数のことをいう。b.

新しい!!: 冪乗と有理数 · 続きを見る »

数(かず、すう、number)とは、.

新しい!!: 冪乗と数 · 続きを見る »

数学

数学(すうがく、μαθηματικά, mathematica, math)は、量(数)、構造、空間、変化について研究する学問である。数学の範囲と定義については、数学者や哲学者の間で様々な見解がある。.

新しい!!: 冪乗と数学 · 続きを見る »

数学的帰納法

数学的帰納法(すうがくてききのうほう、mathematical induction)は自然数に関する命題 が全ての自然数 に対して成り立っている事を証明するための、次のような証明手法である自然数の定義は を含む流儀とそうでない流儀があるが、ここでは後者を採用した。。.

新しい!!: 冪乗と数学的帰納法 · 続きを見る »

数学的構造

数学における構造(こうぞう、mathematical structure)とは、ブルバキによって全数学を統一的に少数の概念によって記述するために導入された概念である。集合に、あるいは圏の対象に構造を決めることで、その構造に対する準同型が構造を保つ写像として定義される。数学の扱う対象は、基本的には全て構造として表すことができる。.

新しい!!: 冪乗と数学的構造 · 続きを見る »

数列

数学において数列(すうれつ、numerical sequence)とは、数が列になったもの (sequence of numbers) を言う。 ある数はそれ単独で興味深い性質や深い意味を持っているかもしれない。単独ではそれほど面白くはない数たちもまとめて考えると興味深い性質を持つかもしれない。数列を考える意識は後者に属する。数列とは例えば正の奇数を小さい順に並べた のような数の“並び”である。並べる数に制限を加えて、たとえば自然数のみを並べるならば、これを自然数列と略称する。整数、有理数、実数などのほかの数体系を用いる場合も同様の略称を用いる。各々の数の“置かれるべき場所”は数列の項 (こう、term) と呼ばれる。数の並びが数列と呼ばれるためには、数列の各項を“順番に並べる”こと、つまりそれぞれの数が何番目の項に配置されているのかを一意に示すように番号付けができなければならない。したがって、“最も簡単”な数列は自然数を小さい順に並べた数列 ということになる(これは自然数が順序数であることによる)。 考える数列に端が存在する場合がある。数列の端に存在する項は、その数列の最初の項、または最後の項であると考えることができる。数列の最初の項をその数列の初項(しょこう、first term)といい、最後の項を数列の末項(まっこう、last term)と呼ぶ。 数列に対して必ずしも初項と末項を定めることはできない。たとえば「すべての自然数」を表わす数列の項の数は「自然数の個数」に等しいが、自然数は無限に存在するため、その末項は存在しない。このように末項が定まらないような数列は、無限数列(むげんすうれつ、infinite sequence)と呼ばれ、末項を持つ数列は有限数列(ゆうげんすうれつ、finite sequence)と呼ばれる。 初項を表わす添字は自由に与えることができ、議論や計算を簡単にするように選ばれるが、慣習的に 0 または 1 が与えられることも多い。たとえば有限数列の初項の添字を 1 から始めた場合、末項は項数に等しい添字 が与えられるため、記述が簡単になる。 特別な数列には、項の並びに規則性のあるものがある。代表的なものは、等差数列や等比数列あるいはフィボナッチ数列のように漸化式で定義される数列である。.

新しい!!: 冪乗と数列 · 続きを見る »

数論

数論(すうろん、number theory)とは数、特に整数およびそれから派生する数の体系(代数体、局所体など)の性質について研究する数学の一分野である。整数論とも言う。ふつうは代数学の一分野とみなされることが多い。おおむね次の四つに分けられる。;初等整数論;代数的整数論;解析的整数論;数論幾何学 フェルマーの最終定理のように、数論のいくつかの問題については、他の数学の分野に比して問題そのものを理解するのは簡単である。しかし、使われる手法は多岐に渡り、また非常に高度であることが多い。 ガウスは次のような言葉を残している。.

新しい!!: 冪乗と数論 · 続きを見る »

括弧

括弧(かっこ)は、約物の一つ。言語の記述の中で、その一部を一対の括弧で囲むことにより、その中と外とを区切る役割を果たす。または目立たせる。 括弧は対で使用され、先に記述される括弧を括弧開き(かっこひらき)または始め括弧(はじめかっこ)、後に記述される括弧を括弧閉じ(かっことじ)または終わり括弧(おわりかっこ)と呼ぶ。横書き表記の記述においては、相対的に左括弧(ひだりかっこ)・右括弧(みぎかっこ)とも呼ぶ。また、対となる括弧がそれぞれ縦並びの括弧を縦括弧(たてかっこ)、横並びの括弧を横括弧(よこかっこ)と呼ぶ。仮名とは異なり、縦書きか横書きかで形が変わる。この項目では横書き表記ですべて取り扱われているが、縦書きの場合は右90度回転されたものになる。 なお、数学においても括弧は頻繁に用いられ、特殊な意味を持つ。.

新しい!!: 冪乗と括弧 · 続きを見る »

0の0乗

の 乗(ぜろのぜろじょう、zero to the power of zero, 0 to the 0th power)は、累乗あるいは指数関数において、底を 、指数を としたものである。通常、指数関数 は実数 と に対して定義されているため、 はこの意味では定義されていない。その値は、指数の が「非負整数の 」であるような場合には と定義しておくと便利であることが多い一方で、0 と定義するのが便利である場合もある。少なくとも「実数あるいは複素数としての 0」であるような場合には、例えば二変数関数 を考えれば分かるように、原点 において自然な(二変数関数として連続となる)定義は存在しないから、連続性や解析性による延長はこの議論において有効でない。.

新しい!!: 冪乗と0の0乗 · 続きを見る »

1

一」の筆順 1(一、いち、ひと、ひとつ)は、最小の正の整数である。0 を自然数に含めない流儀では、最小の自然数とも言える。整数の通常の順序において、0 の次で 2 の前の整数である。1 はまた、実数を位取り記数法で記述するための数字の一つでもある。 「無」を意味する 0 に対して、1 は有・存在を示す最原初的な記号なので、物事を測る基準単位、つまり数や順序を数える際の初めである。英語の序数詞では、1st、first となる。ラテン語では unus(ウーヌス)で、接頭辞 uni- はこれに由来する。.

新しい!!: 冪乗と1 · 続きを見る »

1/16

* 分数 - 16分の1。.

新しい!!: 冪乗と1/16 · 続きを見る »

1/2

½(2分の1、にぶんのいち)は、有理数のうち 0 と 1 の間にある数であり、2 の逆数である。文章の中では 1/2 と表記されることも多い。.

新しい!!: 冪乗と1/2 · 続きを見る »

1/4

(4分の1、よんぶんのいち、しぶんのいち)は、0 と 1 の間にある有理数の一つであり、4 の逆数である。十進法の小数表示は 0.25 である。.

新しい!!: 冪乗と1/4 · 続きを見る »

1/8

(8分の1、はちぶんのいち)は、0 と 1 の間にある有理数の一つであり、8 の逆数である。十進法で小数表示すると 0.125 である。.

新しい!!: 冪乗と1/8 · 続きを見る »

16

16(十六、じゅうろく、とおあまりむつ)は自然数、また整数において、15 の次で 17 の前の数である。ラテン語では sedecim(セーデキム)。.

新しい!!: 冪乗と16 · 続きを見る »

1950年代

1950年代(せんきゅうひゃくごじゅうねんだい)は、西暦(グレゴリオ暦)1950年から1959年までの10年間を指す十年紀。この項目では、国際的な視点に基づいた1950年代について記載する。.

新しい!!: 冪乗と1950年代 · 続きを見る »

2

二」の筆順 2(二、に、じ、ふた、ふたつ)は、自然数、また整数において、1 の次で 3 の前の数である。英語の序数詞では、2nd、second となる。ラテン語では duo(ドゥオ)。.

新しい!!: 冪乗と2 · 続きを見る »

2の冪

2の冪(にのべき)は、適当な自然数 n を選べば、2 の n 乗 2n の形に表せる自然数の総称である。平たく言うと2の累乗数(にのるいじょうすう)である。.

新しい!!: 冪乗と2の冪 · 続きを見る »

4

四」の筆順 4(四、よん、し、す、よつ、よ)は、自然数および整数で、3 の次で 5 の前の数である。漢字の「四」は音読みが「し」、訓読みが「よ(よつ)」であるが、四の字「七(しち)」との聞き違いを防ぐため、近年では「よん」という読みが用いられる。英語の序数詞では 4th/''fourth'' となる。ラテン語では quattuor (クアットゥオル)。.

新しい!!: 冪乗と4 · 続きを見る »

8

八」の筆順 8(八、はち、は、ぱ、や)は、自然数または整数において、7 の次で 9 の前の数である。ラテン語では octo(オクトー)。.

新しい!!: 冪乗と8 · 続きを見る »

ここにリダイレクトされます:

べき乗べき指数ベキ乗冪指数冪数指数法則累乗

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »