ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
無料
ブラウザよりも高速アクセス!
 

一次方程式

索引 一次方程式

数学における一次方程式(いちじほうていしき、first-degree polynomial equation, linear equation)は一次多項式の根を求めるものである。.

15 関係: 多項式の根多項式の次数実数一次関数平面平面における直線の標準形ドット積アフィン部分空間線型汎函数線型性群上の加群複素数超平面斜体 (数学)数学

多項式の根

数学における多項式 の根(こん、root)は、 を満たす値 を言う。すなわち、根は未知数 の多項式方程式 の解であり、また対応する多項式函数の零点である。例えば、多項式 の根は および となる。 ある体に係数を持つ非零多項式は、「より大きい」体の中にしか根を持たないこともあるが、根の数はその多項式の次数より多くなることはない。例えば は次数 で有理数係数だが、有理根を持たず、二つの根を実数体 に(したがって 複素数体 の中に)おいて持つ。ダランベール–ガウスの定理は次数 の任意の複素係数多項式が(必ずしも異ならない) 個の根を持つことを述べるものである。 多項式の根の概念は、多変数多項式の零点の概念に一般化される。.

新しい!!: 一次方程式と多項式の根 · 続きを見る »

多項式の次数

数学、初等代数学における多項式の次数(じすう、degree)は、多項式を不定元の冪積の線型結合からなるに表すとき、そこに現れる項のうち最も高い項の次数を言う。ここに、項の次数とは、それに現れる不定元の冪指数の総和である。次数の同義語として「位数」「階数」(order) が用いられることもあるが、今日的にはに取られるのが普通だろう。 例えば、多項式 は三つの項からなる。多項式の記法に関する通常の規約により、この多項式は厳密には を意味することに注意する。最初の項の次数は (冪指数 と の和)であり、二番目の項の次数は, 最後の項の次数は であるから、この中で最高次の項の次数である がこの多項式の次数ということになる。 上のような標準形になっていない多項式の次数の決定に際しては、たとえば のような場合、積は分配法則に従って展開し、同類項をまとめて、まずは標準形に直さなければならない。いまの例では だから次数は である(二つの二次式の和をとったにもかかわらず、である)。しかし、多項式が標準形の多項式の「積」に書かれている時には、積の次数は各因子の次数の総和として計算できるから、必ずしも展開・整理は要しない。 多項式の次数の日本語名称は、一貫して次数の値に接尾辞「-次」をつける。英語名称は、いくつかの例外はあるが基本的にラテン語の序数詞に形容詞を作る接尾辞の -ic を付けて表す。次数と不定元の数はきちんと区別されるべきであって、こちらには接尾辞「-元」あるいは「-変数」を付ける(英語名称ではラテン語に接尾辞 -ary が付く)。例えば のような二つの不定元に関する次数 の多項式は「二元二次」("binary quadratic") であると言い、二元 (binary) が不定元の数が であることを、二次 (quadratic) 次数が であることを言い表している。もう一つ、項の数も明示するなら「-項式」(英語名称では ラテン配分数詞に接尾辞 -nomial)を付ける。単項式 (monomial), 二項式 (binomial) あるいは三項式 (trinomial) など。つまり、例えば は「二元二次二項式」("binary quadratic binomial") である。 以下しばらくは一元多項式に関して述べる。.

新しい!!: 一次方程式と多項式の次数 · 続きを見る »

実数

数学における実数(じっすう、 nombre réel, reelle Zahl, real number)は、様々な量の連続的な変化を表す数の体系である。実数全体の空間は、途切れのなさにあたる完備性とよばれる位相的な性質を持ち、代数的には加減乗除ができるという体の構造を持っている。幾何学や解析学ではこれらのよい性質を利用して様々な対象が定義され、研究されている。一方でその構成方法に自明でない手続きが含まれるため、実数の空間は数学基礎論の観点からも興味深い性質を持っている。また、自然科学における連続的なものの計測値を表すのに十分な数の体系だとも考えられている。 実数の概念は、その形式的な定義が19世紀に達成される前から数の体系として使われていた。「実数」という名前は複素数の概念が導入された後に「普通の数」を表現する言葉として導入されたものである。.

新しい!!: 一次方程式と実数 · 続きを見る »

一次関数

y-切片を持つ。 数学、特に初等解析学における(狭義の)一次関数(いちじかんすう、linear function)は、(の)一次()、つまり次数 の多項式が定める関数 をいう。ここで、係数 は に依存しない定数であり、矢印は各値 に対して を対応させる関数であることを意味する。特に解析幾何学において、係数および定義域は実数の範囲で扱われ、その場合一次関数のグラフは平面直線である。 より広義には、係数や定義域として複素数やその他の環を考えたり、多変数の一次多項式函数や、あるいは一次式をベクトル空間や作用を持つ加群の文脈で理解することもある。 一次関数は線型関数( の直訳)やアフィン関数 とも呼ばれ、この場合しばしば定数関数 も含む。ベクトルを変数とする広義の一次関数はアフィン写像と呼ばれ、これはベクトルにベクトルを対応させる写像であるが、ふつう線型写像はその特別な場合 で斉一次函数で与えられる。 以下、解析幾何学における実函数としての一次函数について述べる。.

新しい!!: 一次方程式と一次関数 · 続きを見る »

平面

平面(へいめん、plane)とは、平らな表面のことである広辞苑 第五版、p.2395「平面」。平らな面。 一般的には曲面や立体などと対比されつつ理解されている。.

新しい!!: 一次方程式と平面 · 続きを見る »

平面における直線の標準形

平面上の解析幾何学において、直線の方程式はそのさまざまな特徴の抽出の仕方によって種々の を持つ。一般に直線の方程式は実二変数の一次方程式であたえられる。 以下、x, y を実数値の変数、t を実数値助変数とし、それ以外は定数を表すものとする。.

新しい!!: 一次方程式と平面における直線の標準形 · 続きを見る »

ドット積

数学あるいは物理学においてドット積(ドットせき、dot product)あるいは点乗積(てんじょうせき)とは、ベクトル演算の一種で、2つの同じ長さの数列から一つの数値を返す演算。代数的および幾何的に定義されている。幾何的定義では、(デカルト座標の入った)ユークリッド空間 において標準的に定義される内積のことである。.

新しい!!: 一次方程式とドット積 · 続きを見る »

アフィン部分空間

三次元空間内の平面 (青) はひとつのアフィン部分空間で、原点を通る平面をベクトル (赤) の分だけ平行移動させることで得られる。 線型代数学におけるベクトル空間のアフィン部分空間(アフィンぶぶんくうかん、affine subspace)は線型部分空間を平行移動することによって得られる部分集合を言う。アフィン部分空間は解析幾何学の意味でそれ自身一つのアフィン空間を成す。.

新しい!!: 一次方程式とアフィン部分空間 · 続きを見る »

線型汎函数

数学の特に線型代数学における線型汎函数(せんけいはんかんすう、linear functional)は、ベクトル空間からその係数体への線型写像をいう。線型形式 (linear form) 若しくは一次形式 (one-form) あるいは余ベクトル (covector) ともいう。 ユークリッド空間 Rn のベクトルを列ベクトルとして表すならば、線型汎函数は行ベクトルで表され、線型汎函数のベクトルへの作用は点乗積として、若しくは左から行ベクトルと右から列ベクトルとを行列の乗法で掛け合わせることで与えられる。 一般に、体 k 上のベクトル空間 V に対し、その上の線型汎函数とは V から k への写像 f であって、線型性 を満たすものを言う。V から k への線型汎函数全体の成す集合 Homk(V, k) はそれ自体が k 上のベクトル空間を成し、V の双対空間と呼ばれる(連続的双対空間と区別する必要がある場合には代数的双対空間とも呼ばれる)。考えている係数体 k が明らかなときは、V の双対空間はしばしば V∗ または V′ で表される。.

新しい!!: 一次方程式と線型汎函数 · 続きを見る »

線型性

線型性(せんけいせい、英語: linearity)あるいは線型、線形、線状、リニア(せんけい、英語: linear、ラテン語: linearis)とは、直線そのもの、または直線のようにまっすぐな図形やそれに似た性質をもつ対象および、そのような性質を保つ変換などを指して用いられている術語である。対義語は非線型性(英語:Non-Linearity)である。 英語の数学用語のlinear にあてる日本語訳としては、線型が本来の表記であると指摘されることもあるが、他にも線形、線状などといった表記もしばしば用いられている。また一次という表記・表現もしばしば用いられている。というのはlinearは、(多変数の)斉一次函数を指していると考えて間違っていない場合も多いためである。.

新しい!!: 一次方程式と線型性 · 続きを見る »

群上の加群

数学において、与えられた群 G 上の加群(かぐん、module over G)または G-加群 (G-module) とは、アーベル群 M であって M の群構造と両立する G の作用を持つものをいう。これは ''G'' の表現に広く一般に用いることのできる概念である。群コホモロジーは G-加群の一般論の研究において重要な道具をいくつも提供する。 G-加群という用語はもっといっぱんに、G が線型に(つまり R-加群の自己同型からなる群として)作用する ''R''-加群に対しても用いられる。.

新しい!!: 一次方程式と群上の加群 · 続きを見る »

複素数

数学における複素数(ふくそすう、complex number)は、実数の対 と と線型独立な(実数ではない)要素 の線型結合 の形に表される数(二元数: 実数体上の二次拡大環の元)で、基底元 はその平方が になるという特別な性質を持ち虚数単位と呼ばれる。 複素数全体の成す集合を太字の あるいは黒板太字で と表す。 は、実数全体の成す集合 と同様に、可換体の構造を持ち、とくに を含む代数閉体を成す。複素数体はケイリー–ディクソン代数(四元数、八元数、十六元数など)の基点となる体系であり、またさまざまな超複素数系の中で最もよく知られた例である。 複素数の概念は、一次元の実数直線を二次元の複素数平面に拡張する。複素数は自然に二次元平面上に存在すると考えることができるから、複素数全体の成す集合上に自然な大小関係(つまり全順序)をいれることはできない。すなわち は順序体でない。 ある数学的な主題や概念あるいは構成において、それが複素数体を基本の体構造として考えられているとき、そのことはしばしばそれら概念等の名称に(おおくは接頭辞「複素-」を付けることで)反映される。例えば、複素解析、複素行列、複素(係数)多項式、複素リー代数など。.

新しい!!: 一次方程式と複素数 · 続きを見る »

超平面

初等幾何学における超平面(ちょうへいめん、hyperplane)の概念は、二次元の平面をそれ以外の次元へ一般化するものである。''n''-次元空間における超平面とは、次元が n − 1 の平坦な部分空間をいう。その特質として、一つの超平面は全体空間を二つの半空間に分割する。.

新しい!!: 一次方程式と超平面 · 続きを見る »

斜体 (数学)

斜体(しゃたい、skew field; 歪体, Schiefkörper, corps, corps gauche)は加減乗除が可能な代数系である。除法の可能な環であるという意味で可除環(かじょかん、, )ともいう。係数環を持ち、多元環の構造を持つことを強調する場合は、特に多元体(たげんたい、,; 可除多元環)と呼称することも多いいかなる斜体も、その中心を係数体として多元環と見ることができるので、この区別は文脈上で立場を明確にする必要のある場合を除いてはさほど重要ではない。非可換な積を持つ体を非可換体(ひかかんたい、, )という。.

新しい!!: 一次方程式と斜体 (数学) · 続きを見る »

数学

数学(すうがく、μαθηματικά, mathematica, math)は、量(数)、構造、空間、変化について研究する学問である。数学の範囲と定義については、数学者や哲学者の間で様々な見解がある。.

新しい!!: 一次方程式と数学 · 続きを見る »

ここにリダイレクトされます:

一次代数方程式一次多項式方程式

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »