ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
インストール
ブラウザよりも高速アクセス!
 

ギルバート・ルイス

索引 ギルバート・ルイス

ルバート・ニュートン・ルイス(Gilbert Newton Lewis, 1875年10月23日 - 1946年3月24日)は、アメリカ合衆国の物理化学者。共有結合の発見(ルイスの電子式)、重水の単離、化学熱力学を数学的に厳密で普通の化学者にも馴染める形で再構築、酸と塩基の定義、光化学実験などで知られている。1926年、放射エネルギーの最小単位を "photon"(光子)と名付けた。化学の専門家のフラタニティ Alpha Chi Sigma のメンバーだった。長く教授を務めたが、中でもカリフォルニア大学バークレー校に最も長く在籍した。.

85 関係: 原子価結合法原子核原子模型実験式不対電子三重項状態化学平衡化学結合ノーベル化学賞ノーベル賞マニラマサチューセッツ州マサチューセッツ工科大学ネブラスカ大学リンカーン校ネイチャーハロルド・ユーリーハーバード大学バークレー (カリフォルニア州)ライナス・ポーリングライプツィヒラジカル (化学)ルイス構造式ロマンス諸語ローレンツ変換ヴァルター・ネルンストヴィルヘルム・オストヴァルトデバイ-ヒュッケルの式デービーメダルフラタニティとソロリティフィリピンフガシティーアメリカ合衆国アメリカ化学会アメリカ芸術科学アカデミーアメリカ議会図書館アルベルト・アインシュタインアーネスト・ローレンスアーヴィング・ラングミュアイオン強度ウィラード・ギブズウィラード・ギブズ賞ウェイマス (マサチューセッツ州)エネルギーカリフォルニア大学バークレー校カリフォルニア州グレン・シーボーグケンブリッジ (マサチューセッツ州)ゲッティンゲンシアン化水素スピン角運動量...セオドア・リチャーズサイクロトロン共有結合光子光化学四酸素王立協会磁性窒素米国科学アカデミー経済学熱力学熱化学燐光物理化学相対性原理相対性理論質量重水重水素自由エネルギー酸と塩基酸素電子電解質活量液体有機化合物時空10月23日1875年1946年3月23日3月24日 インデックスを展開 (35 もっと) »

原子価結合法

量子化学において原子価結合法(げんしかけつごうほう、valence bond theory、略称: VB法)とは、化学結合を各原子の原子価軌道に属する電子の相互作用によって説明する手法である。.

新しい!!: ギルバート・ルイスと原子価結合法 · 続きを見る »

原子核

原子核(げんしかく、atomic nucleus)は、単に核(かく、nucleus)ともいい、電子と共に原子を構成している。原子の中心に位置する核子の塊であり、正の電荷を帯びている。核子は、基本的には陽子と中性子から成っているが、通常の水素原子(軽水素)のみ、陽子1個だけである。陽子と中性子の個数、すなわち質量数によって原子核の種類(核種)が決まる。 原子核の質量を半経験的に説明する、ヴァイツゼッカー=ベーテの質量公式(原子核質量公式、他により改良された公式が存在する)がある。.

新しい!!: ギルバート・ルイスと原子核 · 続きを見る »

原子模型

原子模型(げんしもけい、atomic theory, atomic model)とは、原子の内部の構造についてのモデルである。.

新しい!!: ギルバート・ルイスと原子模型 · 続きを見る »

実験式

実験式(じっけんしき、empirical formula)あるいは経験式は、化学および物理学で用いられる概念で、分野により意味の相違がある。.

新しい!!: ギルバート・ルイスと実験式 · 続きを見る »

不対電子

一酸化窒素のN原子上には1つの不対電子がある。 不対電子(ふついでんし、unpaired electron)とは、分子や原子の最外殻軌道に位置する対になっておらず、電子対を作っていない電子のこと。共有結合を作る共有電子対や非共有電子対に比べ、化学的に不安定であり、反応性が高い。有機化学においては、不対電子を持つ、寿命の短いラジカルが反応経路を説明するのに重要な役割を果たしている。 電子は量子数によって決められる電子軌道を運動している。 s軌道やp軌道は、原子価を満たすようにsp3、sp2、spなどの混成軌道を形成するので、不対電子が現れることは少ない。これらの軌道ではラジカルは二量化し、電子が非局在化して安定化する。対照的に、d軌道やf軌道において、不対電子はよく見られる。これは、1つの電子軌道に入ることができる電子の数が多く、結合が弱くなるためである。またこれらの軌道においては、が比較的小さく、二量体にはなりにくい。 たとえば原子番号8の酸素は8個の電子を持つ。1s、2s軌道に各2個、2p軌道には4個の電子が配置される。2p軌道には1個あるいはスピンの向きが反対の2個の電子を入れることのできる軌道が3組あるので、酸素原子の最外殻には1組(2s軌道の2個を除いて)の対になった電子と、対になっていない2個の電子が存在することになる。 酸素分子は酸素原子2個からなるが、酸素分子の分子軌道では、2p軌道の計8個の電子は、もともと対になっている4個(2組)と、共有され対になった2個と、対になっていない2個という配置になる。 また一酸化窒素も不対電子をもつ物質の一つである。 対になっていない電子があることが磁性の特性をきめる。.

新しい!!: ギルバート・ルイスと不対電子 · 続きを見る »

三重項状態

量子力学において、三重項(さんじゅうこう)とはスピン1の系の量子状態をいい、スピンの特定方向成分の値は, 及び のいずれかとなる。 物理学において、スピンとは物体に内在する角運動量 を言い、ある点の回りを回る重心運動に起因する軌道角運動量とは区別される。量子力学において、スピンは原子、陽子、電子などの原子スケールの系において特に重要である。 このような粒子および量子系のスピン(粒子スピン)は、非古典的な性質を持っており、スピン角運動量は幾何学的な意味での回転運動とは独立だが、抽象的な意味での「内在的」角運動量とみなせる。 日常で触れるほとんど全ての分子は一重項状態にあるが、酸素分子は例外である。室温において、 は三重項状態で存在し、化学反応が開始できるよう一重項状態へ遷移するには禁制遷移を経る必要があり、平衡論的には強力な酸化剤であるにもかかわらず速度論的には不活性となっている。酸素分子を一重項状態にして速度論的にも酸化剤とするためには、光化学的・熱的に活性化する必要がある。.

新しい!!: ギルバート・ルイスと三重項状態 · 続きを見る »

化学平衡

化学平衡(かがくへいこう、chemical equilibrium)とは可逆反応において、順方向の反応と逆方向との反応速度が釣り合って反応物と生成物の組成比が巨視的に変化しないことをいう。.

新しい!!: ギルバート・ルイスと化学平衡 · 続きを見る »

化学結合

化学結合(かがくけつごう)は化学物質を構成する複数の原子を結びつけている結合である。化学結合は分子内にある原子同士をつなぎ合わせる分子内結合と分子と別の分子とをつなぎ合わせる分子間結合とに大別でき、分子間結合を作る力を分子間力という。なお、金属結晶は通常の意味での「分子」とは言い難いが、金属結晶を構成する結合(金属結合)を説明するバンド理論では、分子内結合における原子の数を無限大に飛ばした極限を取ることで、金属結合の概念を定式化している。 分子内結合、分子間結合、金属結合のいずれにおいても、化学結合を作る力は原子の中で正の電荷を持つ原子核が、別の原子の中で負の電荷を持つ電子を電磁気力によって引きつける事によって実現されている。物理学では4種類の力が知られているが、電磁気力以外の3つの力は電磁気力よりも遥かに小さい為、化学結合を作る主要因にはなっていない。したがって化学結合の後述する細かな分類、例えば共有結合やイオン結合はどのような状態の原子にどのような形で電磁気力が働くかによる分類である。 化学結合の定式化には、複数の原子がある場合において電子の軌道を決定する必要があり、そのためには量子力学が必須となる。しかし多くの簡単な化合物や多くのイオンにおいて、化学結合に関する定性的な説明や簡単な定量的見積もりを行う分には、量子力学で得られた知見に価電子や酸化数といった分子の構造と構成を使って古典力学的考察を加える事でも可能である。 それに対し複雑な化合物、例えば金属複合体では価電子理論は破綻し、その振る舞いの多くは量子力学を基本とした理解が必要となる。これに関してはライナス・ポーリングの著書、The Nature of the Chemical Bondで詳しく述べられている。.

新しい!!: ギルバート・ルイスと化学結合 · 続きを見る »

ノーベル化学賞

ノーベル化学賞(ノーベルかがくしょう、Nobelpriset i kemi)はノーベル賞の一部門。アルフレッド・ノーベルの遺言によって創設された6部門のうちの一つ。化学の分野において重要な発見あるいは改良を成し遂げた人物に授与される。 ノーベル化学賞のメダルは、表面にはアルフレッド・ノーベルの横顔(各賞共通)、裏面には宝箱を持ち雲の中から現れた自然の女神のベールを科学の神が持ち上げて素顔を眺めている姿(物理学賞と共通)がデザインされている。.

新しい!!: ギルバート・ルイスとノーベル化学賞 · 続きを見る »

ノーベル賞

ノーベル賞(ノーベルしょう)は、ダイナマイトの発明者として知られるアルフレッド・ノーベルの遺言に従って1901年から始まった世界的な賞である。物理学、化学、生理学・医学、文学、平和および経済学の「5分野+1分野」で顕著な功績を残した人物に贈られる。 経済学賞だけはノーベルの遺言にはなく、スウェーデン国立銀行の設立300周年祝賀の一環としてノーベルの死後70年後にあたる1968年に設立されたものであり、ノーベル財団は「ノーベル賞ではない」としているが、一般にはノーベル賞の一部門として扱われることが多い。.

新しい!!: ギルバート・ルイスとノーベル賞 · 続きを見る »

マニラ

マニラ市(Maynilà 、Manila )は、フィリピン共和国の首都。メトロ・マニラとも呼ばれるマニラ首都圏に所属する都市。フィリピンのルソン島中西部にあり、マニラ湾東岸に位置している。 『東洋の真珠』などの美称があり、フィリピンがスペイン人によって植民地化された16世紀末よりフィリピンの首府であり、独立後も一貫して首都でありつづけている。市域人口は166万人(2007年)であり、人口1,155万人を抱えるメトロ・マニラの中核都市である。さらに近郊を含む都市圏人口は2016年時点で2,293万人であり、世界有数の大都市圏を形成している。 アメリカのシンクタンクが2017年に発表した総合的な世界都市ランキングにおいて、世界66位の都市と評価された。東南アジアでは、シンガポール、バンコク、クアラルンプール、ジャカルタに次ぐ5位である。.

新しい!!: ギルバート・ルイスとマニラ · 続きを見る »

マサチューセッツ州

マサチューセッツ州(Commonwealth of Massachusetts、)は、アメリカ合衆国の州であり、北東部ニューイングランド6州の1つでもある。マサチューセッツ州は「州」(State) の代わりにコモンウェルスを使っているが、日本語では他州と同様に「州」と訳されている。2010年度の人口は 6,547,629 人。 南はロードアイランド州とコネチカット州、西はニューヨーク州、北はバーモント州とニューハンプシャー州に接している。東は大西洋である。アメリカ合衆国50州の中で、陸地面積では第44位、人口では第14位、人口密度が第3位である。東部のボストン大都市圏と、西部のスプリングフィールド大都市圏という2つの中心地がある。人口の約3分の2はボストン大都市圏に住んでいる。州都はボストン市であり、人口最大の都市でもある。ボストン大都市圏には、ハーバード大学、マサチューセッツ工科大学などがあるケンブリッジやサマービル、クインシーなどの市町が含まれている。 マサチューセッツ州はアメリカ史の中で各分野にわたって重要な役割を演じてきた。1620年、メイフラワー号の乗船客ピルグリムによって、プリマス植民地が設立された。1636年に設立されたハーバード大学は国内最古の高等教育機関である。1692年、セイラムとその周辺ではセイラム魔女裁判と呼ばれる忌まわしい事件が起こった。18世紀、大西洋圏を席捲したプロテスタントの第一次大覚醒運動は、ノーサンプトンの説教師ジョナサン・エドワーズに端を発していた。18世紀後半には、アメリカ独立戦争とイギリスからの独立に繋がる扇動によって、ボストンは「自由の揺籃」とも呼ばれた。1777年にヘンリー・ノックス将軍が設立したスプリングフィールド造兵廠は、産業革命の時代に交換部品など多くの重要な技術進歩を促進した。1786年、州西部の農夫によるポピュリスト革命、シェイズの反乱が直接アメリカ合衆国憲法制定会議の開催に繋がる要因になった。 南北戦争以前の時代には、禁酒運動、超越論的思想、奴隷制度廃止運動の中心になった。1837年、コネチカット川バレーのサウスハドリーの町に、国内初の女子カレッジであるマウント・ホリヨーク大学が開校した。19世紀、州西部の都市、スプリングフィールドとホリヨークでバスケットボールとバレーボールが発明された。2004年、州最高裁判所の判決により、国内で初めて同性結婚を法律で認める州になった。州内からはアダムズ家やケネディ家など多くの著名政治家を輩出してきた。 マサチューセッツ州は当初漁業、農業、貿易業に依存していたが、産業革命の間に工業の中心に変わった。20世紀にはその経済が工業からサービス業に転換された。21世紀には、高等教育、医療技術、ハイテクと金融業で指導的存在である。.

新しい!!: ギルバート・ルイスとマサチューセッツ州 · 続きを見る »

マサチューセッツ工科大学

マサチューセッツ工科大学(英語: Massachusetts Institute of Technology)は、アメリカ合衆国マサチューセッツ州ケンブリッジに本部を置く私立工科大学である。1865年に設置された。通称はMIT(エム・アイ・ティー。「ミット」は誤用で主に日本、欧州の極めて一部で用いられる)。 全米屈指のエリート名門校の1つとされ、ノーベル賞受賞者を多数(2014年までの間に1年以上在籍しMITが公式発表したノーベル賞受賞者は81名で、この数はハーバード大学の公式発表受賞者48名を上回る)輩出している。最も古く権威ある世界大学評価機関の英国Quacquarelli Symonds(QS)による世界大学ランキングでは、2012年以来2017年まで、ハーバード大学及びケンブリッジ大学を抑えて6年連続で世界第一位である。 同じくケンブリッジ市にあるハーバード大学とはライバル校であるが、学生達がそれぞれの学校の授業を卒業単位に組み込める単位互換制度(Cross-registration system)が確立されている。このため、ケンブリッジ市は「世界最高の学びのテーマパーク」とさえも称されている。物理学や生物学などの共同研究組織を立ち上げるなど、ハーバード大学との共同研究も盛んである。 MITはランドグラント大学でもある。1865年から1900年の間に約19万4千ドル(これは2008年時点の生活水準でいうところの380万ドルに相当)のグラントを得、また同時期にマサチューセッツ州から更なる約36万ドル(2008年時点の生活水準で換算して700万ドルに相当)の資金を獲得しているD.

新しい!!: ギルバート・ルイスとマサチューセッツ工科大学 · 続きを見る »

ネブラスカ大学リンカーン校

略称はUNLまたはNU。 ロゴ 2008年現在、学部生と院生を合計して約2万3000人の学生が在籍する総合大学。ネブラスカ大学システムの基幹として、同州の大学教育をリードする存在である。特に農学部と経営学部が高く評価されている専修大学国際交流センター、“”。(参照:2009年8月30日)。大学スポーツの強豪校としても有名であり、カレッジフットボールや女子バレーボールでは複数回全米チャンピオンとなっている。 1909年から102年の間、世界的な有名大学や研究大学を中心に高水準の学術研究と教育システムを維持するために設立された北米トップクラスの研究型大学の組織、アメリカ大学協会の63校のうちの1校であった。2011年にアメリカ大学協会のメンバーから外れ、ビッグテンカンファレンスに加盟した。.

新しい!!: ギルバート・ルイスとネブラスカ大学リンカーン校 · 続きを見る »

ネイチャー

『ネイチャー』()は、1869年11月4日、イギリスで天文学者ノーマン・ロッキャーによって創刊された総合学術雑誌である。 世界で特に権威のある学術雑誌のひとつと評価されており、主要な読者は世界中の研究者である。雑誌の記事の多くは学術論文が占め、他に解説記事、ニュース、コラムなどが掲載されている。記事の編集は、イギリスの Nature Publishing Group (NPG) によって行われている。NPGからは、関連誌として他に『ネイチャー ジェネティクス』や『ネイチャー マテリアルズ』など十数誌を発行し、いずれも高いインパクトファクターを持つ。.

新しい!!: ギルバート・ルイスとネイチャー · 続きを見る »

ハロルド・ユーリー

ハロルド・クレイトン・ユーリー(Harold Clayton Urey, 1893年4月29日 - 1981年1月5日)はアメリカ合衆国インディアナ州ウォルカートン出身の化学者。1934年に重水素発見の功績によってノーベル化学賞を受賞した。.

新しい!!: ギルバート・ルイスとハロルド・ユーリー · 続きを見る »

ハーバード大学

ハーバード大学(英語: Harvard University)は、アメリカ合衆国の研究型私立大学であり、アイビー・リーグの一校。イギリス植民地時代の1636年に設置された、アメリカ合衆国内において、最も学術的起源の古い高等教育機関である。.

新しい!!: ギルバート・ルイスとハーバード大学 · 続きを見る »

バークレー (カリフォルニア州)

バークレー (Berkeley) は、アメリカカリフォルニア州アラメダ郡にある都市である。バークリーとも。人口は約10万人。サンフランシスコ・ベイエリア内、サンフランシスコ湾東岸にある都市で、オークランドの北に隣接する。カリフォルニア大学システムの発祥校であるカリフォルニア大学バークレー校やローレンス・バークレー国立研究所がある。 全米で政治的・社会的に最も進歩的な都市として知られている。60年代のヒッピー文化の発祥の地でもある。2014年には住民投票で、肥満や糖尿病を防ぐことを目的に炭酸飲料に課税する「ソーダ税」を、アメリカで初めて2015年1月1日から導入することとした。 バークレー市はまた、進歩的なライフスタイルの発祥の地でもある。.

新しい!!: ギルバート・ルイスとバークレー (カリフォルニア州) · 続きを見る »

ライナス・ポーリング

ライナス・カール・ポーリング(Linus Carl Pauling、1901年2月28日 - 1994年8月19日)は、アメリカ合衆国の量子化学者、生化学者。彼自身は結晶学者、分子生物学者、医療研究者とも自称していた。 ポーリングは20世紀における最も重要な化学者の一人として広く認められている。量子力学を化学に応用した先駆者であり、化学結合の本性を記述した業績により1954年にノーベル化学賞を受賞した。また、結晶構造決定やタンパク質構造決定に重要な業績を残し、分子生物学の草分けの一人とも考えられている。ワトソンとクリックが1953年にDNAの生体内構造である「二重らせん構造」を発表する前に、ポーリングはほぼそれに近い「三重らせん構造」を提唱していた。多方面に渡る研究者としても有名で、無機化学、有機化学、金属学、免疫学、麻酔学、心理学、弁論術、放射性崩壊、核戦争のもたらす影響などの分野でも多大な貢献があった。 1962年、地上核実験に対する反対運動の業績によりノーベル平和賞を受賞した。ポーリングは単独でノーベル賞を複数回受賞した数少ない人物の一人である。後年、大量のビタミンCや他の栄養素を摂取する健康法を提唱し、更にこの着想を一般化させて分子矯正医学を提唱、それを中心とした数冊の本を著してこれらの概念、分析、研究、及び洞察を一般社会に紹介した。.

新しい!!: ギルバート・ルイスとライナス・ポーリング · 続きを見る »

ライプツィヒ

ライプツィヒ(ドイツ語: )は、ザクセン州に属するドイツの都市である。人口は約52万1千人(2012年12月現在)、ザクセン州では州都ドレスデンをやや上回って最大の都市で、旧東ドイツ地域ではベルリンに次いで2番目である。日本語ではライプチヒとも表記される(表記参照)。南部ドイツ語ではライプツィクと発音されることもある。 バッハやメンデルスゾーンそしてヴァーグナーらゆかりのドイツを代表する音楽の街、またベルリンの壁崩壊、ひいては東西両ドイツの統一の端緒となった住民運動の発祥地として知られる。.

新しい!!: ギルバート・ルイスとライプツィヒ · 続きを見る »

ラジカル (化学)

ラジカル (radical) は、不対電子をもつ原子や分子、あるいはイオンのことを指す。フリーラジカルまたは遊離基(ゆうりき)とも呼ばれる。 また最近の傾向としては、C2, C3, CH2 など、不対電子を持たないがいわゆるオクテット則を満たさず、活性で短寿命の中間化学種一般の総称として「ラジカル(フリーラジカル)」と使う場合もある。 通常、原子や分子の軌道電子は2つずつ対になって存在し、安定な物質やイオンを形成する。ここに熱や光などの形でエネルギーが加えられると、電子が励起されて移動したり、あるいは化学結合が二者に均一に解裂(ホモリティック解裂)することによって不対電子ができ、ラジカルが発生する。 ラジカルは通常、反応性が高いために、生成するとすぐに他の原子や分子との間で酸化還元反応を起こし安定な分子やイオンとなる。ただし、1,1-ジフェニル-2-ピクリルヒドラジル (DPPH) など、特殊な構造を持つ分子は安定なラジカルを形成することが知られている。 多くのラジカルは電子対を作らない電子を持つため、磁性など電子スピンに由来する特有の性質を示す。このため、ラジカルは電子スピン共鳴による分析が可能である。さらに、結晶制御により分子間でスピンをうまく整列させ、極低温であるが強磁性が報告されたラジカルも存在する。1991年、木下らにより報告されたp-Nitrophenyl nitronylnitroxide (NPNN)が、最初の有機強磁性体の例である (Tc.

新しい!!: ギルバート・ルイスとラジカル (化学) · 続きを見る »

ルイス構造式

ルイス構造(ルイスこうぞう、Lewis structure)は、元素記号の周りに内殻電子を無視して価電子のみを点(・)で表した化学構造式の一種で、分子中に存在する原子間の結合と孤立電子対を示す図である。ルイス構造は、どの原子同士が互いに結合を形成しているか、どの原子が孤立電子対を持っているか、どの原子が形式電荷を持っているかが分かるため有用である。 ルイス構造では、単結合は一対の点(:)で表記し、二重結合、三重結合はそれぞれ電子対の数を増やして表記する。ルイス構造式は任意の共有結合分子や配位化合物を描くことができる。ルイス構造式の着想は1916年にアメリカの化学者ギルバート・N・ルイスがThe Atom and the Moleculeと題した論文で提唱した。その他にも電子式 (electronic formula)、点電子構造式、点電子表記法といった呼称がある。 File:Acqua Lewis.png|thumb|H-O-H(水)のルイス構造 File:Carbon-dioxide-octet-Lewis-2D.png|thumb|O.

新しい!!: ギルバート・ルイスとルイス構造式 · 続きを見る »

ロマンス諸語

マンス諸語(ロマンスしょご)は、インド・ヨーロッパ語族イタリック語派ラテン・ファリスク語群に属する言語のうち、ラテン語の口語である俗ラテン語に起源をもつ言語の総称である。ロマン諸語、ロマンス語、ロマン語とも言う。 また、ラテン・ファリスキ語群のことをロマンス語群、イタリック語派のことをロマンス語派と言うこともある。 方言連続体についての論議の際、しばしばロマンス系諸語の近似性について言及される。これは近代言語学の父・フェルディナン・ド・ソシュールが一般言語学講義の中でフランス語とイタリア語は一つの方言連続体であり、「明確な境界線を引くことは難しい」と記している事からも窺える。ロマンス諸語は個々の言語である前にラテン語の方言であるともいえる。.

新しい!!: ギルバート・ルイスとロマンス諸語 · 続きを見る »

ローレンツ変換

ーレンツ変換(ローレンツへんかん、Lorentz transformation)は、2 つの慣性系の間の座標(時間座標と空間座標)を結びつける線形変換で、電磁気学と古典力学間の矛盾を回避するために、アイルランドのジョセフ・ラーモア(1897年)とオランダのヘンドリック・ローレンツ(1899年、1904年)により提案された。 アルベルト・アインシュタインが特殊相対性理論(1905年)を構築したときには、慣性系間に許される変換公式として、理論の基礎を形成した。特殊相対性理論では全ての慣性系は同等なので、物理法則はローレンツ変換に対して不変な形、すなわち同じ変換性をもつ量の間のテンソル方程式として与えられなければならない。このことをローレンツ不変性(共変性)をもつという。 幾何学的には、ミンコフスキー空間における 2 点間の世界間隔を不変に保つような、原点を中心にした回転変換を表す(ミンコフスキー空間でみたローレンツ変換節参照)。.

新しい!!: ギルバート・ルイスとローレンツ変換 · 続きを見る »

ヴァルター・ネルンスト

ヴァルター・ヘルマン・ネルンスト(、1864年6月25日 – 1941年11月18日)はドイツの化学者、物理化学者。ネルンストの式や、熱力学第三法則を発見した。.

新しい!!: ギルバート・ルイスとヴァルター・ネルンスト · 続きを見る »

ヴィルヘルム・オストヴァルト

フリードリヒ・ヴィルヘルム・オストヴァルト(Friedrich Wilhelm Ostwald、Vilhelms Ostvalds、1853年9月2日 – 1932年4月4日)はドイツ(バルト・ドイツ人)の化学者。オストワルトあるいはオストワルドとも呼ばれる。1909年、触媒作用・化学平衡・反応速度に関する業績が認められ、ノーベル化学賞を受賞した。ヤコブス・ヘンリクス・ファント・ホッフやスヴァンテ・アレニウスと共に物理化学という分野を確立した1人とされている。.

新しい!!: ギルバート・ルイスとヴィルヘルム・オストヴァルト · 続きを見る »

デバイ-ヒュッケルの式

デバイ-ヒュッケルの式は電解液の中のイオンの相互作用を統計力学的に解析したものである。ピーター・デバイとエーリヒ・ヒュッケルの名前にちなんでいるP.

新しい!!: ギルバート・ルイスとデバイ-ヒュッケルの式 · 続きを見る »

デービーメダル

デービーメダル(Davy Medal)は、王立協会(イギリス)が1877年から毎年、化学の諸分野での非常に重要な発見に対して贈る賞である。賞の名前は19世紀の化学者ハンフリー・デービーに由来する。£2000の賞金とともに贈られる。.

新しい!!: ギルバート・ルイスとデービーメダル · 続きを見る »

フラタニティとソロリティ

フラタニティ()と、ソロリティ()は、それぞれラテン語の「兄弟」及び「姉妹」を表す「frater」と「soror」に由来する言葉であり、ライオンズクラブ、イプシロン・シグマ・アルファ、国際ロータリー、東方聖堂騎士団やフリーメイソン付随の組織であるシュライナーなど、多くの社交団体や慈善団体をさす場合に使われる単語である。しかし、アメリカ合衆国やカナダなど北米において、フラタニティとソロリティは大学・大学院など高等教育の男子寮、女子寮あるいは学生のための社交団体を表す用語として最もよく知られている。日本語では男子・女子社交クラブ、男子・女子学生友愛クラブなどと訳されることがある。.

新しい!!: ギルバート・ルイスとフラタニティとソロリティ · 続きを見る »

フィリピン

フィリピン共和国(フィリピンきょうわこく、Republika ng Pilipinas、Republic of the Philippines、) 通称フィリピンは、東南アジアに位置する共和制国家である。島国であり、フィリピン海を挟んで日本とパラオ、ルソン海峡を挟んで台湾、スールー海を挟んでマレーシア、セレベス海を挟んでインドネシア、南シナ海を挟んで中国およびベトナムと対する。フィリピンの東にはフィリピン海、西には南シナ海、南にはセレベス海が広がる。首都はマニラで、最大の都市はケソンである。国名のフィリピンは16世紀のスペイン皇太子フェリペからちなんでいる。.

新しい!!: ギルバート・ルイスとフィリピン · 続きを見る »

フガシティー

フガシティ(fugacity)または逃散能、散逸能とは、物理化学の分野において、圧力の高い実在気体の化学平衡を扱うときにも、理想気体の化学ポテンシャルの形式が成り立つようにする意図で導入された概念である。 この概念はもとはウィラード・ギブズが という考えを熱力学的平衡に用いたことに由来し、ギルバート・ルイスが導入した。.

新しい!!: ギルバート・ルイスとフガシティー · 続きを見る »

アメリカ合衆国

アメリカ合衆国(アメリカがっしゅうこく、)、通称アメリカ、米国(べいこく)は、50の州および連邦区から成る連邦共和国である。アメリカ本土の48州およびワシントンD.C.は、カナダとメキシコの間の北アメリカ中央に位置する。アラスカ州は北アメリカ北西部の角に位置し、東ではカナダと、西ではベーリング海峡をはさんでロシアと国境を接している。ハワイ州は中部太平洋における島嶼群である。同国は、太平洋およびカリブに5つの有人の海外領土および9つの無人の海外領土を有する。985万平方キロメートル (km2) の総面積は世界第3位または第4位、3億1千7百万人の人口は世界第3位である。同国は世界で最も民族的に多様かつ多文化な国の1つであり、これは多くの国からの大規模な移住の産物とされているAdams, J.Q.;Strother-Adams, Pearlie (2001).

新しい!!: ギルバート・ルイスとアメリカ合衆国 · 続きを見る »

アメリカ化学会

アメリカ化学会(アメリカかがくかい、American Chemical Society, 略称ACS)は、米国に基盤をおく、化学分野の研究を支援する学術専門団体である。本拠地は、ワシントン、オハイオ州コロンバス。 ACSは1876年に設立された。現在の会員数は約163,000人と、科学系学術団体としては世界最大のものになっている。1年に2度化学の全領域についての国内会議と、数十の特別分野についての小委員会を開催している。 出版部門では、39誌の雑誌(多くが各分野のトップジャーナルとなっている)と、数シリーズの書籍を発行している。中でも最も古いのは1879年に発行を開始した米国化学会誌(Journal of the American Chemical Society, JACS)であり、これは現在発行されている全化学系雑誌の中でもトップクラスのインパクトファクターと、極めて高い権威を有する雑誌である。 また、世界で報告される約8,000種類の定期刊行物・特許・学会会議録・新刊図書データを集めた巨大なデータベースChemical Abstracts (CA)を作成しており、その中でこれまで報告されたあらゆる物質にCAS登録番号をつけている。この化学情報データベースサービス (Chemical Abstracts Service, CAS) は化学者が研究を進める上で不可欠なものであり、またACSにとっては主な収入源となっている。 ACSは国際化学オリンピック(IChO)の代表メンバー4人を選ぶコンテストである、「米国化学オリンピック(USNCO)」のスポンサーとしても活動している。.

新しい!!: ギルバート・ルイスとアメリカ化学会 · 続きを見る »

アメリカ芸術科学アカデミー

アメリカ芸術科学アカデミー(アメリカげいじゅつかがくアカデミー、American Academy of Arts and Sciences, 略称: AAAS)は、アメリカ合衆国マサチューセッツ州ケンブリッジに本部を置く学術団体である。通称、アメリカン・アカデミー (American Academy) 。 1780年に学芸を奨励するために設立、ジョン・アダムズ、ジェイムズ・ボーディン、ジョン・ハンコックによって独立戦争中に創設される。政治家・思想家・科学者・発明家などのフェローと外国人名誉会員会員を選出、式典は毎年10月に行われる。 会員にはベンジャミン・フランクリン、ジョージ・ワシントン、トーマス・ジェファーソン、西脇順三郎、アレクサンダー・ハミルトンなどがいる。 外国人名誉会員の日本人には西脇順三郎、安部公房、大栗博司、村山斉、(1952年-、大阪府出身)有馬朗人、野依良治、林文夫、斎藤修がいる。.

新しい!!: ギルバート・ルイスとアメリカ芸術科学アカデミー · 続きを見る »

アメリカ議会図書館

アメリカ議会図書館(アメリカぎかいとしょかん、Library of Congress)は、アメリカ合衆国の国立図書館。蔵書数、予算額、職員数全ての点で世界最大規模の図書館である。略称はLC。 所蔵品の点数は数千万冊の書籍や各種資料など一億点を超える。合衆国連邦政府の立法府(アメリカ合衆国議会)に属する機関であり、1800年に首都ワシントンD.C.に設立された。図書館の財源は議会から支給され、個人からの寄付や贈与も受け付ける。 日本の国立国会図書館は、戦後占領時代の1948年に、アメリカ文化使節団の勧告により、このアメリカ議会図書館をモデルとして造られた。.

新しい!!: ギルバート・ルイスとアメリカ議会図書館 · 続きを見る »

アルベルト・アインシュタイン

アルベルト・アインシュタイン日本語における表記には、他に「アルト・アインシュタイン」(現代ドイツ語の発音由来)、「アルト・アインタイン」(英語の発音由来)がある。(Albert Einstein アルベルト・アインシュタイン、アルバート・アインシュタイン アルバ(ー)ト・アインスタイン、アルバ(ー)タインスタイン、1879年3月14日 - 1955年4月18日)は、ドイツ生まれの理論物理学者である。 特殊相対性理論および一般相対性理論、相対性宇宙論、ブラウン運動の起源を説明する揺動散逸定理、光量子仮説による光の粒子と波動の二重性、アインシュタインの固体比熱理論、零点エネルギー、半古典型のシュレディンガー方程式、ボーズ=アインシュタイン凝縮などを提唱した業績などにより、世界的に知られている偉人である。 「20世紀最高の物理学者」や「現代物理学の父」等と評され、それまでの物理学の認識を根本から変えるという偉業を成し遂げた。(光量子仮説に基づく光電効果の理論的解明によって)1921年のノーベル物理学賞を受賞。.

新しい!!: ギルバート・ルイスとアルベルト・アインシュタイン · 続きを見る »

アーネスト・ローレンス

アーネスト・オーランド・ローレンス(Ernest Orlando Lawrence、1901年8月8日 - 1958年8月27日)は、アメリカ合衆国の物理学者。カリフォルニア大学準教授(1928年 - 1930年)、のち教授(1930年 - 1958年)。またバークレー放射線研究所の設立者兼所長(1936年 - 1958年)であり、ローレンス・リバモア研究所(1952年 -)の創立者でもある。 原子物理学や素粒子物理学で標準的に使用される加速器であるサイクロトロンを発明したことで知られる。さらに、門下の物理学者たちによるサイクロトロンを用いた多くの人工放射性元素の発見を指導した。テクネチウムの発見もサイクロトロンを用いた合成によるものである。ネプツニウムを筆頭に1950年代までに発見された超ウラン元素のほとんどは彼が所長を務めていたバークレー放射線研究所(現在のローレンス・バークレー国立研究所)で合成されている。 第二次世界大戦中はマンハッタン計画に参加し、1942年には米国で初の原子力爆弾生産工場となったの建設計画にも関与。質量分析法によるウラン235の工業的分離に成功した。戦後も加速器の改良に力を注ぎ、バークレーに (Bevatron) と名付けられた当時世界最大のシンクロトロンを建設した。セグレとチェンバレンらによる反陽子の発見もベヴァトロンによるものである。 1939年、「サイクロトロンの開発および人工放射性元素の研究」によりノーベル物理学賞を受賞した。1958年には第1回シルヴァナス・セイヤー賞(Sylvanus Thayer Award)を受賞している。 第103番元素ローレンシウムの名はローレンスの名にちなんでいる。 彼の弟ジョン・ローレンス(1904年-1991年)も物理学者となり、シンチグラフィのパイオニアとして知られている。 また、後にトリニトロンの原型となるアパーチャーグリル式のブラウン管であるクロマトロンを発明した人物でもある。.

新しい!!: ギルバート・ルイスとアーネスト・ローレンス · 続きを見る »

アーヴィング・ラングミュア

アーヴィング・ラングミュア(Irving Langmuir, 1881年1月31日 - 1957年8月16日)は、アメリカ合衆国の化学者、物理学者である。1932年に表面科学の分野への貢献でノーベル化学賞を受賞した。 コロンビア大学を卒業後、ゲッティンゲン大学で、ヴァルター・ネルンストのもとで化学を学び、1909年からゼネラル・エレクトリックの研究所で研究を始め1950年まで在籍した。また、「事実でない事柄についての科学」を病的科学として定義したことでも知られている。.

新しい!!: ギルバート・ルイスとアーヴィング・ラングミュア · 続きを見る »

イオン強度

イオン強度(いおんきょうど)とは、電解質溶液の活量係数とイオン間の相互作用を関係づけるための概念で、溶液中のすべてのイオン種について、それぞれのイオンのモル濃度m_iと電荷z_iの2乗の積を加え合わせ、さらにそれを1/2にしたものである。例えば、2価の陽イオンと2価の陰イオンから成る電解質ならモル濃度の4倍の値となる。 例 モル濃度(\rm moldm^)でも成り立つが、質量モル濃度 (\rm molkg^)でも成り立つ。デバイ-ヒュッケルの式にもとづく。 イオン強度は溶液中におけるイオンの活量に著しく影響を与えるものである。従って酸解離定数および錯生成定数などイオンの濃度に関わるものはイオン強度の影響を大きく受け、実験では過塩素酸ナトリウムなどの強電解質を用いてイオン強度を一定に保った上で条件定数が測定される。熱力学的な平衡定数はイオン強度が0、すなわち無限希釈におけるものであり、異なるイオン強度における測定値をイオン強度.

新しい!!: ギルバート・ルイスとイオン強度 · 続きを見る »

ウィラード・ギブズ

ョサイア・ウィラード・ギブズ ジョサイア・ウィラード・ギブズ(Josiah Willard Gibbs, 1839年2月11日 - 1903年4月28日)はアメリカコネチカット州ニューヘイブン出身の数学者・物理学者・物理化学者で、エール大学(イェール大学)教授。 熱力学分野で熱力学ポテンシャル、化学ポテンシャル概念を導入し、相平衡理論の確立、相律の発見など、今日の化学熱力学の基礎を築いた。統計力学の確立にも大きく貢献した。ギブズ自由エネルギーやギブズ-デュエムの式、ギブズ-ヘルムホルツの式等にその名を残している。 ベクトル解析の創始者の一人として数学にも寄与している。 ギブズの科学者としての経歴は、4つの時期に分けられる。1879年まで、ギブズは、熱力学理論を研究した。1880年から1884年までは、ベクトル解析分野の研究を行った。1882年から1889年までは、光学と光理論の研究をした。1889年以降は、統計力学の教科書作成に関わった。なお、彼の功績を称えて、小惑星(2937)ギブズが彼の名を取り命名されている。.

新しい!!: ギルバート・ルイスとウィラード・ギブズ · 続きを見る »

ウィラード・ギブズ賞

ウィラード・ギブズ賞(Willard Gibbs Award)はアメリカ化学会によって1911年以来授与されている化学の賞。アメリカ合衆国の物理化学者ウィラード・ギブズの功績を讃えて創設された。.

新しい!!: ギルバート・ルイスとウィラード・ギブズ賞 · 続きを見る »

ウェイマス (マサチューセッツ州)

ウェイマス(Weymouth)は、アメリカ合衆国マサチューセッツ州の中央部、ノーフォーク郡の東部に位置する都市である。2010年の国勢調査では人口53,743 人だった。市の形態の政府を採ると申請し認められたものの、市名の中に「町」を残すことを選んだ州内14市の1つである。市の名前はイングランドのドーセットにある海岸町ウェイマスから採られた。マサチューセッツ州ではヨーロッパ人による開拓地として2番目に古い町である。.

新しい!!: ギルバート・ルイスとウェイマス (マサチューセッツ州) · 続きを見る »

エネルギー

ネルギー(、)とは、.

新しい!!: ギルバート・ルイスとエネルギー · 続きを見る »

カリフォルニア大学バークレー校

バークレー校はカリフォルニア大学 (University of California) の発祥地であり、10大学からなるカリフォルニア大学システム(UCシステム)の中で最も古い歴史を持つ。ハーバード大学など同国東部の名門私立大学群の集まりである「アイビーリーグ」に対し名門公立大学の集まりである「パブリック・アイビー」の一校である。アメリカの公立大学ランキングでは長期間にわたり1位を維持している。同じ米国西海岸サンフランシスコ近郊のベイエリアに位置するスタンフォード大学とはスポーツ分野を中心に長年ライバル関係にある。 シリコンバレーにも近く位置しておりIT系やコンピューター分野でも多数の大企業から出資を受け研究、開発を行っている。UNIXシステムの一つ、BSDもこの大学の研究室で開発された。元サン・マイクロシステムズ技術者のビル・ジョイは、UCバークレーの学生時代に、viエディタと Cシェル (csh) など様々な基本的なツール・ユーティリティを設計、実装している。 第二次世界大戦当時バークレー校の物理学部教授だったロバート・オッペンハイマーやノーベル化学賞受賞者のグレン・シーボーグを筆頭にバークレー校の多くの学者が原子爆弾開発計画であるマンハッタン計画に携わり、米国における原子力爆弾および水素爆弾の開発に大きく貢献した。現在(2014年)まで70人以上のノーベル賞受賞者を輩出している。化学に関する研究が世界的に有名で、周期表の元素のうち6つが本校で発見された。 現在、アメリカの公立大学においてランキング第1位である。.

新しい!!: ギルバート・ルイスとカリフォルニア大学バークレー校 · 続きを見る »

カリフォルニア州

リフォルニア州(State of California、Estado de California、中:加利福尼亚州、加州)は、アメリカ合衆国西部、太平洋岸の州。アメリカ西海岸の大部分を占める。州都は、サクラメントである。.

新しい!!: ギルバート・ルイスとカリフォルニア州 · 続きを見る »

グレン・シーボーグ

レン・セオドア・シーボーグ(Glenn Theodore Seaborg、1912年4月19日 - 1999年2月25日 )は、アメリカの化学者、物理学者。ミシガン州イシュペミング生まれ。カリフォルニア大学バークレー校の教授、研究者。超ウラン元素の合成および研究の功績により、1951年度のノーベル化学賞をエドウィン・マクミランとともに受賞した。.

新しい!!: ギルバート・ルイスとグレン・シーボーグ · 続きを見る »

ケンブリッジ (マサチューセッツ州)

ンブリッジ(英語:Cambridge、漢字:剣橋)は、アメリカ合衆国マサチューセッツ州東部に位置する都市。チャールズ川を隔ててボストンの対岸に位置する。市名のもととなったイギリスの同名の都市同様、全米を代表する大学都市であり、ハーバード大学やマサチューセッツ工科大学がキャンパスを構えている。人口は101,355人(2000年国勢調査)。2010年には105,162人に増加している(2010年国勢調査)。 ケンブリッジはミドルセックス郡の郡庁所在地であるが、郡政府は1997年に廃止された。現在、郡の公務員は州政府のもとで働いている。.

新しい!!: ギルバート・ルイスとケンブリッジ (マサチューセッツ州) · 続きを見る »

ゲッティンゲン

ッティンゲン(標準ドイツ語:Göttingen, 低ザクセン語:Chöttingen)は、ドイツ連邦共和国ニーダーザクセン州ゲッティンゲン郡に属す都市である。同州南部に位置する大学都市であり、教育・研究で強く特徴付けられる。都市名は「ゲッチンゲン」とも表記される。 ゲッティンゲンは、ハノーファー、ブラウンシュヴァイク、オスナブリュック、オルデンブルクに次ぐニーダーザクセン州で5番目に大きな都市であり、上級中心都市の機能を担っている。この街はゲッティンゲン郡の郡庁所在都市であり、同郡最大の都市である。1964年にニーダーザクセン州州議会で可決されたゲッティンゲン法により、それまでの郡独立市からゲッティンゲン郡に編入された。この都市はこれ以後も、特に定めない限り、郡独立市と同等の扱いを受けることになっている。 ゲッティンゲンは1965年に人口10万人を超え、これにより大都市となった。最寄りの大都市には、カッセル(約38km南西)、ヒルデスハイム(約70km北)、ブラウンシュヴァイク(約92km北東)、エアフルト(約98km南東)、ハノーファー(約105km北)、パーダーボルン(約120km西南西)がある。ゲッティンゲンはハノーファー=ブラウンシュヴァイク=ゲッティンゲン=ヴォルフスブルク大都市圏の南端にあたる。.

新しい!!: ギルバート・ルイスとゲッティンゲン · 続きを見る »

シアン化水素

アン化水素 (Hydrogen Cyanide) はメタンニトリル、ホルモニトリル、ギ酸ニトリルとも呼ばれる猛毒の物質である。 相で区別する場合、気体のシアン化水素は青酸ガスといい、液体は液化青酸という。水溶液は弱酸性を示し、シアン化水素酸と呼ばれる。気体、液体、水溶液のいずれについても、慣習的に青酸(せいさん)と呼ばれる。この語は紺青に由来する。シアン酸は異なる物質である。 ドイツ語のシアン(、)はジシアンに詳しい。.

新しい!!: ギルバート・ルイスとシアン化水素 · 続きを見る »

スピン角運動量

ピン角運動量(スピンかくうんどうりょう、spin angular momentum)は、量子力学上の概念で、粒子が持つ固有の角運動量である。単にスピンとも呼ばれる。粒子の角運動量には、スピン以外にも粒子の回転運動に由来する角運動量である軌道角運動量が存在し、スピンと軌道角運動量の和を全角運動量と呼ぶ。ここでいう「粒子」は電子やクォークなどの素粒子であっても、ハドロンや原子核や原子など複数の素粒子から構成される複合粒子であってもよい。 「スピン」という名称はこの概念が粒子の「自転」のようなものだと捉えられたという歴史的理由によるものであるが、現在ではこのような解釈は正しいとは考えられていない。なぜなら、スピンは古典極限 において消滅する為、スピンの概念に対し、「自転」をはじめとした古典的な解釈を付け加えるのは全くの無意味だからであるランダウ=リフシッツ小教程。 量子力学の他の物理量と同様、スピン角運動量は演算子を用いて定義される。この演算子(スピン角運動量演算子)は、スピンの回転軸の方向に対応して定義され、 軸、 軸、 軸方向のスピン演算子をそれぞれ\hat_x,\hat_y,\hat_z と書き表す。これらの演算子の固有値(=これら演算子に対応するオブザーバブルを観測したときに得られる値)は整数もしくは半整数である値 を用いて、 と書き表せる。値 は、粒子のみに依存して決まり、スピン演算子の軸の方向には依存せずに決まる事が知られている。この を粒子のスピン量子数という。 スピン量子数が半整数 になる粒子をフェルミオン、整数 になる粒子をボゾンといい、両者の物理的性質は大きく異る(詳細はそれぞれの項目を参照)。2016年現在知られている範囲において、.

新しい!!: ギルバート・ルイスとスピン角運動量 · 続きを見る »

セオドア・リチャーズ

ドア・ウィリアム・リチャーズ(Theodore William Richards, 1868年1月31日 - 1928年4月2日)は、アメリカ合衆国の物理化学者。アメリカ人初のノーベル化学賞受賞者である。原子番号の大きな原子の原子量を正確に求めたことで知られる。.

新しい!!: ギルバート・ルイスとセオドア・リチャーズ · 続きを見る »

サイクロトロン

イクロトロンとは、イオンを加速するための円形加速器の一種。.

新しい!!: ギルバート・ルイスとサイクロトロン · 続きを見る »

共有結合

H2(右)を形成している共有結合。2つの水素原子が2つの電子を共有している。 共有結合(きょうゆうけつごう、covalent bond)は、原子間での電子対の共有をともなう化学結合である。結合は非常に強い。ほとんどの分子は共有結合によって形成される。また、共有結合によって形成される結晶が共有結合結晶である。配位結合も共有結合の一種である。 この結合は非金属元素間で生じる場合が多いが、金属錯体中の配位結合の場合など例外もある。 共有結合はσ結合性、π結合性、金属-金属結合性、アゴスティック相互作用、曲がった結合、三中心二電子結合を含む多くの種類の相互作用を含む。英語のcovalent bondという用語は1939年に遡る。接頭辞のco- は「共同」「共通」などを意味する。ゆえに、「co-valent bond」は本質的に、原子価結合法において議論されているような「原子価」(valence)を原子が共有していることを意味する。 分子中で、水素原子は共有結合を介して2つの電子を共有している。共有結合性は似た電気陰性度の原子間で最大となる。ゆえに、共有結合は必ずしも同種元素の原子の間だけに生じるわけではなく、電気陰性度が同程度であればよい。3つ以上の原子にわたる電子の共有を伴う共有結合は非局在化している、と言われる。.

新しい!!: ギルバート・ルイスと共有結合 · 続きを見る »

上方から入ってきた光の道筋が、散乱によって見えている様子。(米国のアンテロープ・キャニオンにて) 光(ひかり)とは、基本的には、人間の目を刺激して明るさを感じさせるものである。 現代の自然科学の分野では、光を「可視光線」と、異なった名称で呼ぶことも行われている。つまり「光」は電磁波の一種と位置付けつつ説明されており、同分野では「光」という言葉で赤外線・紫外線まで含めて指していることも多い。 光は宗教や、哲学、自然科学、物理などの考察の対象とされている。.

新しい!!: ギルバート・ルイスと光 · 続きを見る »

光子

|mean_lifetime.

新しい!!: ギルバート・ルイスと光子 · 続きを見る »

光化学

光化学(こうかがく または ひかりかがく、)とは、物質の光照射下での挙動について調べる化学の一領域。広義には、光と物質との相互作用を取り扱う化学の一分野で、光励起による蛍光・蓄光のような発光現象も対象とされている。 光化学が取り扱う物質は、無機化合物から有機化合物まで多岐にわたる。光の波長が赤外線よりも長波長の場合には、光の作用は熱的な作用が主となるため、光化学には含まれないことが多いが、近年の赤外レーザーの出現により、多光子吸収による化学反応が多数報告されたため、光化学の一領域として注目を集めている(非線形光学)。逆に、光の波長が短くなって、X線やγ線のようにイオン化や電子放出のような作用を及ぼす場合には、光化学ではなく放射線化学で取り扱われている。光化学では、光の強度ではなく、光の波長が本質的な意味をもつ。.

新しい!!: ギルバート・ルイスと光化学 · 続きを見る »

四酸素

四酸素(しさんそ)、またはテトラオキシジェン (Tetraoxygen) とは、分子式が O4 と表される酸素の同素体である。1924年ギルバート・ルイスが、液体酸素がキュリーの法則に従わない理由の説明として提案したとされる。安定ではないが、計算化学では液体酸素中で逆スピン同士の酸素分子 O2 が一組になった状態で、一時的に O4 分子が存在する可能性があることが分かっている。1999年には、研究者によってε 相(10 GPa 以上の圧力)の固体酸素中に存在すると予想されたが、2006年にX線回折によってε-酸素中に存在する分子は O4ではなく、O8(八酸素)であることが示された。しかし、質量分析法では O4 が短命な化学種として検出されている。.

新しい!!: ギルバート・ルイスと四酸素 · 続きを見る »

王立協会

イヤル・ソサイエティ(Royal Society)は、現存する最も古い科学学会。1660年に国王チャールズ2世の勅許を得て設立された。正式名称は"The President, Council, and Fellows of the Royal Society of London for Improving Natural Knowledge"(自然知識を促進するためのロンドン王立協会)。日本語訳ではロンドン王立協会(-おうりつきょうかい)、王立学会(おうりつがっかい)など。 この会は任意団体ではあるが、イギリスの事実上の学士院(アカデミー)としてイギリスにおける科学者の団体の頂点にあたる。また、科学審議会(Science Council)の一翼をになうことによって、イギリスの科学の運営および行政にも大いに影響をもっている。1782年創立の王立アイルランドアカデミーと密接な関係があり、1783年創立のエジンバラ王立協会とは関係が薄い。.

新しい!!: ギルバート・ルイスと王立協会 · 続きを見る »

磁性

物理学において、磁性(じせい、magnetism)とは、物質が原子あるいは原子よりも小さいレベルで磁場に反応する性質であり、他の物質に対して引力や斥力を及ぼす性質の一つである。磁気(じき)とも言う。.

新しい!!: ギルバート・ルイスと磁性 · 続きを見る »

窒素

素(ちっそ、nitrogen、nitrogenium)は原子番号 7 の元素。元素記号は N。原子量は 14.007。空気の約78.08 %を占めるほか、アミノ酸をはじめとする多くの生体物質中に含まれており、地球のほぼすべての生物にとって必須の元素である。 一般に「窒素」という場合は、窒素の単体である窒素分子(窒素ガス、N2)を指すことが多い。窒素分子は常温では無味無臭の気体として安定した形で存在する。また、液化した窒素分子(液体窒素)は冷却剤としてよく使用されるが、液体窒素温度 (-195.8 ℃, 77 K) から液化する。.

新しい!!: ギルバート・ルイスと窒素 · 続きを見る »

米国科学アカデミー

米国科学アカデミー(べいこくかがくアカデミー、、)は、アメリカ合衆国の科学アカデミーであり、民間非営利団体に位置づけられる。全米アカデミーズの一員である。 アカデミー会員は、米国における科学、技術、医学におけるプロボノとしての活動を行っている。機関誌として『米国科学アカデミー紀要』を発行する。.

新しい!!: ギルバート・ルイスと米国科学アカデミー · 続きを見る »

経済学

この記事では経済学(けいざいがく、economics)について解説する。経済学の原語であるeconomicsという語彙は、新古典派経済学者アルフレッド・マーシャルの主著『経済学原理』(Principles of Economics, 1890年)によって誕生・普及したとされる。 日本語で「経済学」と言った場合、economicsだけでなく政治経済学(political economy)を指す場合もあるため、本記事ではこの「政治経済学」も併せて解説する。 佐藤雅彦・竹中平蔵 『経済ってそういうことだったのか会議』 日本経済新聞社学〈日経ビジネス人文庫〉、2002年、5頁。。 -->.

新しい!!: ギルバート・ルイスと経済学 · 続きを見る »

熱力学

熱力学(ねつりきがく、thermodynamics)は、物理学の一分野で、熱や物質の輸送現象やそれに伴う力学的な仕事についてを、系の巨視的性質から扱う学問。アボガドロ定数個程度の分子から成る物質の巨視的な性質を巨視的な物理量(エネルギー、温度、エントロピー、圧力、体積、物質量または分子数、化学ポテンシャルなど)を用いて記述する。 熱力学には大きく分けて「平衡系の熱力学」と「非平衡系の熱力学」がある。「非平衡系の熱力学」はまだ、限られた状況でしか成り立たないような理論しかできていないので、単に「熱力学」と言えば、普通は「平衡系の熱力学」のことを指す。両者を区別する場合、平衡系の熱力学を平衡熱力学、非平衡系の熱力学を非平衡熱力学 と呼ぶ。 ここでいう平衡 とは熱力学的平衡、つまり熱平衡、力学的平衡、化学平衡の三者を意味し、系の熱力学的(巨視的)状態量が変化しない状態を意味する。 平衡熱力学は(すなわち通常の熱力学は)、系の平衡状態とそれぞれの平衡状態を結ぶ過程とによって特徴付ける。平衡熱力学において扱う過程は、その始状態と終状態が平衡状態であるということを除いて、系の状態に制限を与えない。 熱力学と関係の深い物理学の分野として統計力学がある。統計力学は熱力学を古典力学や量子力学の立場から説明する試みであり、熱力学と統計力学は体系としては独立している。しかしながら、系の平衡状態を統計力学的に記述し、系の状態の遷移については熱力学によって記述するといったように、一つの現象や定理に対して両者の結果を援用している 。しかしながら、アインシュタインはこの手法を否定している。.

新しい!!: ギルバート・ルイスと熱力学 · 続きを見る »

熱化学

熱化学(ねつかがく、英語:thermochemistry)または化学熱力学(かがくねつりきがく)は物理化学の一分野で、化学反応におけるエネルギー変化を主に熱の観点から追究する学問である。化学反応はエネルギーの放出や吸収を伴い、融解や沸騰といった相転移も同様のことがおこる。熱化学はこれらのエネルギー変化、特に系と外界とのエネルギーのやり取りに焦点を当てる。熱化学は与えられた一連の反応を通した反応物と生成物の量を予測するのに有用である。エントロピー決定と組み合わせることで、反応が自発的であるか非自発的であるか、すなわち有利か不利かを予想することもできる。 吸熱反応は熱を吸収し、発熱反応は熱を放出する。熱化学は熱力学の概念と化学結合の結合エネルギーの概念を組み合わせたものである。一般に、熱化学の主題は熱容量、燃焼熱、生成熱、エンタルピー、エントロピー、自由エネルギー、カロリーと言った量の計算を含む。 熱化学の分野を作り上げた人物の一人として、ヘスの法則などで知られるジェルマン・アンリ・ヘスが挙げられる。.

新しい!!: ギルバート・ルイスと熱化学 · 続きを見る »

燐光

光 燐光(りんこう、phosphorescence)とは、物質が光を発する現象、またはその発する光のこと。 蛍光も同じ発光現象(ルミネセンス)であるが、蛍光は励起一重項状態から基底一重項状態への許容遷移の際に起こるのに対し、燐光は励起三重項状態から基底一重項状態への禁制遷移の際に起こる。そのため、蛍光に比べると燐光は一般的に寿命が長くなる。両者の違いについては蛍光に詳しい。ルミネセンス(主にフォトルミネセンス)において、励起光が消失したあとも長く発光することから蓄光性とも呼ばれ、蓄光塗料(夜光塗料)として利用される。 有機EL素子(エレクトロルミネセンス)では、量子物理化学より、電荷再結合により一重項励起子と三重項励起子が統計的に25:75の比で生成することが知られている。一重項励起子は三重項励起子への項間交差も起こすため、EL燐光材料(100%励起三重項状態が生成するイリジウム錯体、白金錯体などの遷移重金属錯体)を有機ELに用いた場合には内部量子収率を理論上100%にすることが可能であり、注目を集めている。 File:Phosphorescent pigments.jpg|左:硫化亜鉛、右:アルミン酸ストロンチウム File:Phosphorescent pigments 1 min.jpg|消灯直後 File:Phosphorescent pigments 4 min.jpg|消灯4分後.

新しい!!: ギルバート・ルイスと燐光 · 続きを見る »

物理化学

物理化学(ぶつりかがく、physical chemistry)とは、化学の対象である物質、あるいはその基本的な構成を成している化合物や分子などについて、物質の構造、物質の性質(=物性)、物質の反応を調べる知恵蔵2012 市村禎二郎 東京工業大学教授 執筆【物理化学】ために、物理学的な手法を用いて研究する領域に対する呼称。理論的な基礎として熱力学と量子力学、およびこれら2つをつなぐ統計力学を大きな柱とする。 化学は対象とする物質によって有機化学、無機化学などがあるが、物理化学でも対象によって有機物理化学、無機物理化学と呼び分けられている。 物理化学の中の分野としては以下のものがある。.

新しい!!: ギルバート・ルイスと物理化学 · 続きを見る »

相対性原理

対性原理(そうたいせいげんり, Principle of relativity)は、互いに運動する物体の座標系の間では、物理学の法則が不変な形を保つという原理。次の三つがある。.

新しい!!: ギルバート・ルイスと相対性原理 · 続きを見る »

相対性理論

一般相対性理論によって記述される、2次元空間と時間の作る曲面。地球の質量によって空間が歪むとして記述して、重力を特殊相対性理論に取り入れる。実際の空間は3次元であることに注意すべし。 相対性理論(そうたいせいりろん、Relativitätstheorie, theory of relativity)または相対論は特殊相対性理論と一般相対性理論の総称である。量子論に対し古典論に分類される物理の分野としては、物理史的には最後の「大物」であった。量子力学と並び、いわゆる現代物理の基本的な理論である。 特殊と一般の、いずれもアルベルト・アインシュタインにより記述された。まず、等速運動する慣性系の間において物理法則は互いに不変であるはずという原理(相対性原理)と光速度不変の原理から導かれたのが、特殊相対性理論である(1905年)。特殊相対性理論は、時間と空間に関する相互間の変換が、相対速度が光速に近づくと、従来のいわゆる「ニュートン時空」的に信じられていたガリレイ変換の結果とは違ったものになること、そういった場合にはローレンツ変換が正しい変換であることを示した(「ミンコフスキー時空」)。 続いて、等価原理により加速度によるいわゆる「見かけの重力」と重力場を「等価」として、慣性系以外にも一般化したのが一般相対性理論である(1915〜1916年)。.

新しい!!: ギルバート・ルイスと相対性理論 · 続きを見る »

質量

質量(しつりょう、massa、μᾶζα、Masse、mass)とは、物体の動かしにくさの度合いを表す量のこと。.

新しい!!: ギルバート・ルイスと質量 · 続きを見る »

重水

重水(じゅうすい、heavy water)とは、質量数の大きい同位体の水分子を多く含み、通常の水より比重の大きい水のことである。重水に対して通常の水 (1H216O) を軽水と呼ぶ。重水素と軽水素は電子状態が同じであるため、重水と軽水の化学的性質は似通っている。しかし質量が違うので、物理的性質は異なる。 通常の水は 1H216O であるが、重水は水素の同位体である重水素(デューテリウム: D, 2H)や三重水素(トリチウム: T, 3H)、酸素の同位体 17O や 18O などを含む。なお通常の水はH216Oが99.76%からなるが、H218O0.17%、H217O0.037%、HD16O0.032%などの水もわずかながら含まれている。 狭義には化学式 D2O、すなわち重水素二つと質量数16の酸素によりなる水のことを言い、単に「重水」と言った場合はこれを指すことが多い。別名に酸化重水素 (deuterium oxide, Water-d2) など。自然界では、D2O としての重水はほとんど存在せず、重水は DHO の分子式として存在する。.

新しい!!: ギルバート・ルイスと重水 · 続きを見る »

重水素

重水素(じゅうすいそ、heavy hydrogen)またはデューテリウム (deuterium) とは、水素の安定同位体のうち、原子核が陽子1つと中性子1つとで構成されるものをいう。重水素は H と表記するが、 D(deuteriumの頭文字)と表記することもある。例えば重水の分子式を DO と表記することがある。 原子核が陽子1つと中性子2つとで構成される水素は三重水素(H)と呼ばれる。重水素、三重水素に対して普通の水素(原子核が陽子1つのもの)は軽水素(H)と呼ばれる。.

新しい!!: ギルバート・ルイスと重水素 · 続きを見る »

自由エネルギー

自由エネルギー(じゆうエネルギー、)とは、熱力学における状態量の1つであり、化学変化を含めた熱力学的系の等温過程において、系の最大仕事(潜在的な仕事能力)、自発的変化の方向、平衡条件などを表す指標となるChang『生命科学系のための物理化学』 pp.63-65アトキンス『物理化学(上)』 pp.120-125。 自由エネルギーは1882年にヘルマン・フォン・ヘルムホルツが提唱した熱力学上の概念で、呼称は彼の命名による。一方、等温等圧過程の自由エネルギーと化学ポテンシャルとの研究はウィラード・ギブズにより理論展開された。 等温等積過程の自由エネルギーはヘルムホルツの自由エネルギー()と呼ばれ、等温等圧過程の自由エネルギーはギブズの自由エネルギー()と呼びわけられる。ヘルムホルツ自由エネルギーは F で表記され、ギブズ自由エネルギーは G で表記されることが多い。両者の間には G.

新しい!!: ギルバート・ルイスと自由エネルギー · 続きを見る »

酸と塩基

酸と塩基(さんとえんき)は化学反応における性質である。化学の初期には水溶液における化学反応を水素イオンと水酸化物イオンから説明するものとして酸と塩基を定義付けていたが(アレニウスの定義)、化学の発展とともにその定義は拡張され、今日では水溶液に限定しない一般の化学反応における電子対の授受により酸と塩基は定義付けられている(ルイスの定義)。.

新しい!!: ギルバート・ルイスと酸と塩基 · 続きを見る »

酸素

酸素(さんそ、oxygen)は原子番号8、原子量16.00の非金属元素である。元素記号は O。周期表では第16族元素(カルコゲン)および第2周期元素に属し、電気陰性度が大きいため反応性に富み、他のほとんどの元素と化合物(特に酸化物)を作る。標準状態では2個の酸素原子が二重結合した無味無臭無色透明の二原子分子である酸素分子 O として存在する。宇宙では水素、ヘリウムに次いで3番目に多くの質量を占めEmsley (2001).

新しい!!: ギルバート・ルイスと酸素 · 続きを見る »

電子

電子(でんし、)とは、宇宙を構成するレプトンに分類される素粒子である。素粒子標準模型では、第一世代の荷電レプトンに位置付けられる。電子は電荷−1、スピンのフェルミ粒子である。記号は e で表される。また、ワインバーグ=サラム理論において弱アイソスピンは−、弱超電荷は−である。.

新しい!!: ギルバート・ルイスと電子 · 続きを見る »

電解質

電解質(でんかいしつ、英語:electrolyte)とは溶媒中に溶解した際に、陽イオンと陰イオンに電離する物質のことである。これに対し、溶媒中に溶解しても電離しない物質を非電解質という。 一般に電解液は電気分解が起こる以上の電圧をかければ電気伝導性を示すが、電解液でないものは電気抵抗が大きい。また、ほとんど溶媒中に溶解しないものは電解質にも非電解質にも含まれない。 溶融した電解質や固体の電解質というものも存在する。 つまり、物質を水に溶かしたとき、イオンになるものとならないものがあり、電気を通す物質はイオンになるものである。これを電解質という。 電解質溶液は十分に高い電圧(一般に数ボルト程度)をかけると電気分解することが可能である。「電解質」という名称はこのことから付けられた。電気分解を起こすことのできる理論分解電圧 V ′ はギブス自由エネルギー変化と以下の関係にある。実際には過電圧のため理論分解電圧より高い電圧を必要とする。.

新しい!!: ギルバート・ルイスと電解質 · 続きを見る »

活量

活量(かつりょう、activity)は、できる限りモル濃度(あるいは他の濃度)に近い性質を持ち、しかも厳密な熱力学の関係に登場し得る量である。一般的には、温度、圧力、物質量についての複雑な関数になる。 理想系と実存系に存在する誤差を修正するためにギルバート・ルイスによって導入された物理量で、普通a、或いはAと表される。活動度と呼ばれる場合もある。.

新しい!!: ギルバート・ルイスと活量 · 続きを見る »

液体

液体の滴は表面積が最小になるよう球形になる。これは、液体の表面張力によるものである 液体(えきたい、liquid)は物質の三態(固体・液体・気体)の一つである。気体と同様に流動的で、容器に合わせて形を変える。液体は気体に比して圧縮性が小さい。気体とは異なり、容器全体に広がることはなく、ほぼ一定の密度を保つ。液体特有の性質として表面張力があり、それによって「濡れ」という現象が起きる。 液体の密度は一般に固体のそれに近く、気体よりもはるかに高い密度を持つ。そこで液体と固体をまとめて「凝集系」などとも呼ぶ。一方で液体と気体は流動性を共有しているため、それらをあわせて流体と呼ぶ。.

新しい!!: ギルバート・ルイスと液体 · 続きを見る »

有機化合物

有機化合物(ゆうきかごうぶつ、organic compound)は、炭素を含む化合物の大部分をさす『岩波 理化学辞典』岩波書店。炭素原子が共有結合で結びついた骨格を持ち、分子間力によって集まることで液体や固体となっているため、沸点・融点が低いものが多い。 下記の歴史的背景から、炭素を含む化合物であっても、一酸化炭素、二酸化炭素、炭酸塩、青酸、シアン酸塩、チオシアン酸塩等の単純なものは例外的に無機化合物と分類し、有機化合物には含めない。例外は慣習的に決められたものであり『デジタル大辞泉』には、「炭素を含む化合物の総称。ただし、二酸化炭素・炭酸塩などの簡単な炭素化合物は習慣で無機化合物として扱うため含めない。」と書かれている。、現代では単なる「便宜上の区分」である。有機物質(ゆうきぶっしつ、organic substance『新英和大辞典』研究社)あるいは有機物(ゆうきぶつ、organic matter『新英和大辞典』研究社)とも呼ばれるあくまで別の単語であり、同一の概念ではない。。.

新しい!!: ギルバート・ルイスと有機化合物 · 続きを見る »

時空

時空(じくう、spacetime)は、時間と空間を合わせて表現する物理学の用語、または、時間と空間を同時に、場合によっては相互に関連したものとして扱う概念である。時空間()とも。.

新しい!!: ギルバート・ルイスと時空 · 続きを見る »

10月23日

10月23日(じゅうがつにじゅうさんにち)は、グレゴリオ暦で年始から296日目(閏年では297日目)にあたり、年末まであと69日ある。.

新しい!!: ギルバート・ルイスと10月23日 · 続きを見る »

1875年

記載なし。

新しい!!: ギルバート・ルイスと1875年 · 続きを見る »

1946年

記載なし。

新しい!!: ギルバート・ルイスと1946年 · 続きを見る »

3月23日

3月23日(さんがつにじゅうさんにち)はグレゴリオ暦で年始から82日目(閏年では83日目)にあたり、年末まであと283日ある。.

新しい!!: ギルバート・ルイスと3月23日 · 続きを見る »

3月24日

3月24日(さんがつにじゅうよっか、さんがつにじゅうよんにち)はグレゴリオ暦で年始から83日目(閏年では84日目)にあたり、年末まであと282日ある。.

新しい!!: ギルバート・ルイスと3月24日 · 続きを見る »

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »