ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
ダウンロード
ブラウザよりも高速アクセス!
 

ヒ化ガリウム

索引 ヒ化ガリウム

ヒ化ガリウム(ヒかガリウム、gallium arsenide)はガリウムのヒ化物であり、組成式はGaAsである。化合物半導体であるため、その性質を利用して半導体素子の材料として多用されている。半導体分野ではガリウムヒ素(ガリウム砒素)という、さらにはそれを短縮したガリヒ素という呼称で呼ばれることも多い。.

39 関係: 半導体半導体レーザー半導体素子半絶縁性基板寄生容量化合物化合物半導体化学式化学式量バンドギャップリーク電流ヘテロ接合 (半導体)ヒ化物ヒ素ドープホールアルシンガリウムケイ素シート抵抗四面体形分子構造結晶構造直線形分子構造直接遷移発光ダイオード融点高電子移動度トランジスタ閃亜鉛鉱電子ボルト電子移動度電界効果トランジスタHBTIARC発がん性リスク一覧III-V族半導体SOI比重準位時定数

半導体

半導体(はんどうたい、semiconductor)とは、電気伝導性の良い金属などの導体(良導体)と電気抵抗率の大きい絶縁体の中間的な抵抗率をもつ物質を言う(抵抗率だけで半導体を論じるとそれは抵抗器と同じ特性しか持ち合わせない)。代表的なものとしては元素半導体のケイ素(Si)などがある。 電子工学で使用されるICのような半導体素子はこの半導体の性質を利用している。 良導体(通常の金属)、半導体、絶縁体におけるバンドギャップ(禁制帯幅)の模式図。ある種の半導体では比較的容易に電子が伝導帯へと遷移することで電気伝導性を持つ伝導電子が生じる。金属ではエネルギーバンド内に空き準位があり、価電子がすぐ上の空き準位に移って伝導電子となるため、常に電気伝導性を示す。.

新しい!!: ヒ化ガリウムと半導体 · 続きを見る »

半導体レーザー

レーザーダイオード本体。非常に小さい。 赤色レーザーダイオードの発振 半導体レーザー 半導体レーザー(はんどうたいレーザー、semiconductor laser)は、半導体の再結合発光を利用したレーザーである。 同じものを指すのに、ダイオードレーザー (diode laser) や、レーザーダイオードという名称も良く用いられLDと表記されることも多い。半導体の構成元素によって発振する中心周波数、つまりレーザー光の色が決まる。常温で動作するものの他に、共振器構造や出力電力によっては冷却が必要なものもある。.

新しい!!: ヒ化ガリウムと半導体レーザー · 続きを見る »

半導体素子

ここでは半導体素子(はんどうたいそし)や半導体部品(-ぶひん)(英:semiconductor device) セミコンダクター・デバイスについて解説する。.

新しい!!: ヒ化ガリウムと半導体素子 · 続きを見る »

半絶縁性基板

半絶縁性基板(はんぜつえんせいきばん、)とは、ヒ化ガリウムやリン化インジウム等の化合物半導体において、不純物を含まない(ドーピングされていない)基板において、高抵抗(比抵抗:数MΩ/□)を示すことを言う。化合物半導体が高周波素子の作成に有利な理由は、高い電子移動度を持っているだけでなく、基板がこの様に高抵抗を示し、リーク電流や対地容量を抑えることが可能であることが大きい。.

新しい!!: ヒ化ガリウムと半絶縁性基板 · 続きを見る »

寄生容量

寄生容量とは、浮遊容量とも呼ばれ、電子部品の内部、あるいは電子回路の中で、それらの物理的な構造に起因する、設計者が意図しない容量成分のことである。 一般的には、ストレーキャパシティ(英 stray capacity)と呼ばれる。 インダクタ、トランジスタ、ダイオード、抵抗などの電子部品は、回路図の上では目的の機能のみを持つ理想的な素子として扱われる。しかし、現実の部品には本来の機能だけではなく、抵抗成分、容量成分、誘導成分などが必然的に現れる。 また、プリント基板上において複数の導線パターンが近接していると、それぞれの導線を電極とする微少な容量成分が寄生容量となる。同じ現象は複数の配線が接近している場合にも発生する。.

新しい!!: ヒ化ガリウムと寄生容量 · 続きを見る »

化合物

化合物(かごうぶつ、chemical compound)とは、化学反応を経て2種類以上の元素の単体に生成することができる物質であり岩波理化学辞典(4版)、p.227、【化合物】、言い換えると2種類以上の元素が化学結合で結びついた純物質とも言える。例えば、水 (H2O) は水素原子 (H) 2個と酸素原子 (O) 1個からなる化合物である。水が水素や酸素とは全く異なる性質を持っているように、一般的に、化合物の性質は、含まれている元素の単体の性質とは全く別のものである。 同じ化合物であれば、成分元素の質量比はつねに一定であり、これを定比例の法則と言い株式会社 Z会 理科アドバンスト 考える理科 化学入門、混合物と区別される。ただし中には結晶の不完全性から生じる岩波理化学辞典(4版)、p.1109、【不定比化合物】不定比化合物のように各元素の比が自然数にならないが安定した物質もあり、これらも化合物のひとつに含める。 化合物は有機化合物か無機化合物のいずれかに分類されるが、その領域は不明瞭な部分がある。.

新しい!!: ヒ化ガリウムと化合物 · 続きを見る »

化合物半導体

化合物半導体(かごうぶつはんどうたい、英:Compound Semiconductor)とは、2つ以上の原子がイオン結合により結合してできる半導体である。一般的に、イオン結合は陽イオンと陰イオンとの強い静電引力によって絶縁体となる。しかし、陽イオンと陰イオンの組み合わせによっては、静電引力が弱く、半導体となる。この時、結晶構造は閃亜鉛鉱型やウルツ鉱型となる。化合物半導体となる元素の組み合わせは代表的なものにIII族とV族元素、II族とVI族元素があり、それぞれIII-V族半導体、II-VI族半導体と呼ばれている。.

新しい!!: ヒ化ガリウムと化合物半導体 · 続きを見る »

化学式

化学式(かがくしき、chemical formula)とは、化学物質を元素の構成で表現する表記法である。分子からなる物質を表す化学式を分子式(ぶんししき、molecular formula)、イオン物質を表す化学式をイオン式(イオンしき、ionic formula)と呼ぶことがある。化学式と呼ぶべき場面においても、分子式と言い回される場合は多い。 化学式が利用される場面としては、物質の属性情報としてそれに関連付けて利用される場合と、化学反応式の一部として物質を表すために利用される場合とがある。.

新しい!!: ヒ化ガリウムと化学式 · 続きを見る »

化学式量

化学式量(かがくしきりょう、chemical formula weight)とは化学式(おもに組成式)に基づいて原子量と原子数の積の総和を求めた値である。場合によっては単に式量(しきりょう、formula weight)と呼ぶこともある。化学式量はその構成単位が分子として明確に決められない場合、たとえばCa2SO4・1/2H2のような無機化合物などに用いられる。イオンではイオン式量が、高分子では高分子式量が用いられる式量、『理化学辞典』、第5版、岩波書店。ISBN4-00-080090-6。これは分子が存在すると否とにかかわらずどんな物質に対しても適用できる包括的な用語であり化学大辞典編集委員会(編)「化学大辞典-第3版」共立(2001/09,初版1960/09)、分子量よりも広義に用いられる大木道則;田中元治;大沢利昭;千原秀昭(編)「化学大辞典」東京化学同人(1989/10)。そして分子量同様、化学式が示す化学量論に基づき反応物あるいは生成物の量的関係を把握する際に利用される。 アボガドロ定数の定義を変形して説明しなおしているだけなので略すに使用する計算の為のパラメーターであり、物質の個数(物質量)と質量とを関係付ける比例係数である。だけに使用できる量であり、例えば純物質Xの中の結晶格子ユニットや高分子のモノマーユニットまたは分子のような繰り返し単位uの個数をNu(X)とすれば、その繰り返し単位の化学式から求めた化学式量をM0として、純物質Xの質量G(X)は次の式となる。 ここでNAはアボガドロ定数であり、純物質Xの物質量nu(X)は次の式となる。つまり繰り返し単位uとはIS基本量である物質量の定義における要素粒子に他ならない。 物質量と原子量との関係から自明なように、成分1ユニット当たりの原子量の総和である化学式量に、ユニット総数を意味するモル当量を乗じた値は、化学式が表現する消費あるいは生成する物質の総質量の値を示す。分子量も原子質量単位を基準とする相対質量比であるから、分子量に分子総数を意味するモル当量を乗じた値は化学式が表現する物質の総質量の値である。 化学式量とは異なり、分子量は原子質量単位を1とする実在する分子の相対質量意味し、例えば質量分析法 (MS) などで個々の分子についても実測できる量である。だが化学式量はあくまでも均質試料の全体について化学量論に基づいて定義されるものであり、ミクロな個々の要素粒子について定義されるものではない。例えば、高分子化合物のように個々の分子の質量が異なる場合は分子量分布や平均分子量が存在するが、化学式量としてはモノマーユニットやオリゴマーユニットの化学式による式量を使う。これは高分子の分子量とは全く別の量であり、例えば化学式量分布といったものは存在しない。 このように、分子量は分子のように明確に区分される構成粒子が存在しないと定義できないが、化学式量の場合は、イオン性物質や金属のような明確に区分される構成粒子が無くても構成比さえ決定できれば算術的に定義することが可能である。 例えば、五酸化二リンは構造式的にはP4O10で表現されるべきであるが、組成式としてはP2O5となる。そして化学量論的には当量を基準とした量的関係が成立する為に、P2O5を化学式量としてもP4O10を化学式量としても反応に関係する物質の重量比は変わらない為、量的関係を算出する上での問題は発生しない。 逆に、分子が分子式として表現されれば分子式の化学式量と分子量の値は定義により一致するので、分子式から分子量を算術的に求める際には暗黙のうちに化学式量が利用されている。なお具体的計算で数値を求める時には、「分子量」の記事に記載してあるような計算ソフト等も使える。.

新しい!!: ヒ化ガリウムと化学式量 · 続きを見る »

バンドギャップ

バンドギャップ(Band gap、禁止帯、禁制帯)とは、広義の意味は、結晶のバンド構造において電子が存在できない領域全般を指す。 ただし半導体、絶縁体の分野においては、バンド構造における電子に占有された最も高いエネルギーバンド(価電子帯)の頂上から、最も低い空のバンド(伝導帯)の底までの間のエネルギー準位(およびそのエネルギーの差)を指す。 E-k空間上において電子はこの状態を取ることができない。バンドギャップの存在に起因する半導体の物性は半導体素子において積極的に利用されている。 半導体のバンド構造の模式図。Eは電子の持つエネルギー、kは波数。Egが'''バンドギャップ'''。半導体(や絶縁体)では「絶対零度で電子が入っている一番上のエネルギーバンド」が電子で満たされており(価電子帯)、その上に禁制帯を隔てて空帯がある(伝導帯)。 金属、および半導体・絶縁体のバンド構造の簡単な模式図(k空間無視) バンドギャップを表現する図は、E-k空間においてバンドギャップ周辺だけに着目した図、さらにk空間を無視してエネルギー準位だけを表現した図も良く用いられる。.

新しい!!: ヒ化ガリウムとバンドギャップ · 続きを見る »

リーク電流

リーク電流(リークでんりゅう、leakage current)とは、電子回路上で、絶縁されていて本来流れないはずの場所・経路で漏れ出す電流のことである。 当該電気回路内に限る意図しない電流の漏れ出しがリーク電流であり、当該電気回路外へ漏れ出す漏電とは区別される。集積回路などの微細化された半導体の回路内での漏れ出しを指すことが多い。.

新しい!!: ヒ化ガリウムとリーク電流 · 続きを見る »

ヘテロ接合 (半導体)

ヘテロ接合(英語:heterojunction)とは、異なる半導体同士の接合である。通常は格子整合系または格子定数が近い材料系で作られる。.

新しい!!: ヒ化ガリウムとヘテロ接合 (半導体) · 続きを見る »

ヒ化物

ヒ化物(ヒかぶつ、arsenide)は、酸化数が-3のヒ素を含む化合物である。ただし、より広義に使われる場合がある。鉱物のスペリー鉱 (PtAs2) は「ヒ化白金」とも呼ばれるが、これは通常固相で Pt4+As24- の組成であるため、ヒ素の形式酸化数は-2である。孤立したヒ素中心をもつのでヒ化ガリウム (GaAs) による説明はより正確である。 ヒ化物は、ヒ素やすべてのヒ素化合物の固有毒性のために有毒である。.

新しい!!: ヒ化ガリウムとヒ化物 · 続きを見る »

ヒ素

ヒ素(砒素、ヒそ、arsenic、arsenicum)は、原子番号33の元素。元素記号は As。第15族元素(窒素族元素)の一つ。 最も安定で金属光沢があるため金属ヒ素とも呼ばれる「灰色ヒ素」、ニンニク臭があり透明なロウ状の柔らかい「黄色ヒ素」、黒リンと同じ構造を持つ「黒色ヒ素」の3つの同素体が存在する。灰色ヒ素は1気圧下において615 で昇華する。 ファンデルワールス半径や電気陰性度等さまざまな点でリンに似た物理化学的性質を示し、それが生物への毒性の由来になっている。.

新しい!!: ヒ化ガリウムとヒ素 · 続きを見る »

ドープ

ドープ (dope) またはドーピング (doping) とは、結晶の物性を変化させるために少量の不純物を添加すること。 特に半導体で重要な操作で、不純物の添加により電子や正孔(キャリア)の濃度を調整する他、禁制帯幅などのバンド構造や物理的特性などを様々に制御するのに用いる。 添加する不純物をドーパントと呼ぶ。半導体の場合、キャリアとして電子を供給するドーパントをドナー、正孔を供給するドーパントをアクセプタと呼ぶ。.

新しい!!: ヒ化ガリウムとドープ · 続きを見る »

ホール

ホール.

新しい!!: ヒ化ガリウムとホール · 続きを見る »

アルシン

アルシン.

新しい!!: ヒ化ガリウムとアルシン · 続きを見る »

ガリウム

リウム (gallium) は原子番号31の元素で、元素記号は Ga である。ホウ素、アルミニウムなどと同じ第13族元素に属する。圧力、温度によっていくつかの安定な結晶構造がある。常温、常圧では斜方晶系が安定(比重 5.9)で、青みがかった金属光沢がある金属結晶である。融点は 29.8 と低いが、一方、沸点は 2403 村上 (2004) 124頁。(異なる実験値あり)と非常に高い。酸やアルカリに溶ける両性である。価電子は3個 (4s, 4p) だが、3d軌道も比較的浅いところにある。 また、水と同じように、液体の方が固体よりも体積が小さい異常液体である。ガリウムは固体から液体になると、その体積が約3.4%減少する。そのため金属のガリウムをガラス容器に保管すると相転移に伴う体積変化によって容器が破損するため、通常はポリ容器に保管される。.

新しい!!: ヒ化ガリウムとガリウム · 続きを見る »

ケイ素

イ素(ケイそ、珪素、硅素、silicon、silicium)は、原子番号 14 の元素である。元素記号は Si。原子量は 28.1。「珪素」「硅素」「シリコン」とも表記・呼称される。地球の主要な構成元素のひとつ。半導体部品は非常に重要な用途である。 地殻中に大量に存在するため鉱物の構成要素として重要であり、ケイ酸塩鉱物として大きなグループを形成している。これには Si-O-Si 結合の多様性を反映したさまざまな鉱物が含まれている。しかしながら生物とのかかわりは薄く、知られているのは、放散虫・珪藻・シダ植物・イネ科植物などにおいて二酸化ケイ素のかたちでの骨格への利用に留まる。栄養素としての必要性はあまりわかっていない。炭素とケイ素との化学的な類似から、SF などではケイ素を主要な構成物質とするケイ素生物が想定されることがある。 バンドギャップが常温付近で利用するために適当な大きさであること、ホウ素やリンなどの不純物を微量添加させることにより、p型半導体、n型半導体のいずれにもなることなどから、電子工学上重要な元素である。半導体部品として利用するためには高純度である必要があり、このため精製技術が盛んに研究されてきた。現在、ケイ素は99.9999999999999 % (15N) まで純度を高められる。また、Si(111) 基板はAFMやSTMの標準試料としてよく用いられる。.

新しい!!: ヒ化ガリウムとケイ素 · 続きを見る »

シート抵抗

ート抵抗 (sheet resistance, sheet resistivity) とは、一様の厚さを持つ薄い膜やフィルム状物質の電気抵抗を表す量のひとつ。表面抵抗率、面抵抗率とも呼ばれる。.

新しい!!: ヒ化ガリウムとシート抵抗 · 続きを見る »

四面体形分子構造

化学において、四面体形分子構造(しめんたいがたぶんしこうぞう、Tetrahedral molecular geometry)とは、中心原子に配位する4個の置換基が四面体の頂点に位置した分子の幾何配置のことである。メタンやその他ののように、4個の置換基がすべて同じときその結合角はcos−1(−1/3).

新しい!!: ヒ化ガリウムと四面体形分子構造 · 続きを見る »

結晶構造

結晶構造(けっしょうこうぞう) とは、結晶中の原子の配置構造のことをいう。.

新しい!!: ヒ化ガリウムと結晶構造 · 続きを見る »

直線形分子構造

化学において、直線形分子構造(ちょくせんけいぶんしこうぞう、Linear molecular geometry)とは、3原子またはそれ以上の原子が結合角180° で結合することが予想される分子構造のことである。有機分子の例に、炭素原子を中心としたsp混成軌道によって表現されるアセチレンがある。 VSEPR模型によれば、直線幾何配置は、AXE表記法において2つの結合原子と0または3個の孤立電子対を持つ中心原子で生じる。直線幾何配置を持つ中性のAX2分子には、2つの単結合を持つフッ化ベリリウム(F−Be−F)、2つの二重結合を持つ二酸化炭素(O.

新しい!!: ヒ化ガリウムと直線形分子構造 · 続きを見る »

直接遷移

接遷移(ちょくせつせんい、direct bandgap)は、波数空間(k空間)において、半導体のバンド図を描いた場合に、伝導帯の底と価電子帯の頂上が同一の波数ベクトル(k点)の点に存在することを言う。直接ギャップ(direct gap)と呼ばれることもある。 直接遷移形の半導体では、伝導帯の下端にいる電子は、価電子帯の上端にいるホールと運動量のやり取りなしに再結合(垂直遷移)、することが出来る。バンドギャップ間の電子・ホールの再結合のエネルギーは光の光子の形で放出される。これを、放射再結合もしくは発光再結合と呼ぶ。  シリコンの様な間接遷移(indirect bandgap)形の半導体は、伝導帯の底と価電子帯の頂上が同じ波数ベクトルの位置に存在しないため、運動量のやり取りなしに電子・ホールは再結合することはできない。再結合は、フォノンや結晶欠陥などを介して行なわれる。これらの場合の再結合エネルギーは、光子の代わりに、フォノンとして放出される(格子振動を励起する)ことが多く、光の放出は行なわれないか、生じても非常に弱い発光となる。.

新しい!!: ヒ化ガリウムと直接遷移 · 続きを見る »

発光ダイオード

光ダイオード(はっこうダイオード、light emitting diode: LED)はダイオードの一種で、順方向に電圧を加えた際に発光する半導体素子である。 1962年、ニック・ホロニアックにより発明された。発明当時は赤色のみだった。1972年にによって黄緑色LEDが発明された。1990年代初め、赤崎勇、天野浩、中村修二らによって、窒化ガリウムによる青色LEDの半導体が発明された。 発光原理はエレクトロルミネセンス (EL) 効果を利用している。また、有機エレクトロルミネッセンス(OLEDs、有機EL)も分類上、LEDに含まれる。.

新しい!!: ヒ化ガリウムと発光ダイオード · 続きを見る »

融点

融点(ゆうてん、Schmelzpunkt、point de fusion、melting point)とは、固体が融解し液体になる時の温度のことをいう。ヒステリシスが無い場合には凝固点(液体が固体になる時の温度)と一致する。また、三重点すなわち平衡蒸気圧下の融点は物質固有の値を取り、不純物が含まれている場合は凝固点降下により融点が低下することから物質を同定したり、純度を確認したりする手段として用いられる。 熱的に不安定な物質は溶融と共に分解反応が生じる場合もある。その場合の温度は分解点と呼ばれる場合があり、融点に(分解)と併記されることがある。.

新しい!!: ヒ化ガリウムと融点 · 続きを見る »

高電子移動度トランジスタ

電子移動度トランジスタ(こうでんしいどうど-、High Electron Mobility Transistor)は、半導体ヘテロ接合に誘起された高移動度の二次元電子ガス(2DEG)をチャネルとした電界効果トランジスタのことで、英語の単語の頭文字を取ってHEMT(ヘムト)と呼ばれる。1979年に富士通研究所の三村高志により発明された。構造上の特徴からヘテロFET (HFET、hetero-FET)、ヘテロ接合FET (HJFET、Hetero-Junction-FET)と呼ばれることもある。一般に化合物半導体で作製され、GaAs系、InP系、GaN系、SiGe系などがある。.

新しい!!: ヒ化ガリウムと高電子移動度トランジスタ · 続きを見る »

閃亜鉛鉱

閃亜鉛鉱(せんあえんこう、sphalerite、スファレライトまたはzincblende)は亜鉛の硫化鉱物である。.

新しい!!: ヒ化ガリウムと閃亜鉛鉱 · 続きを見る »

酸(さん、acid)は化学において、塩基と対になってはたらく物質のこと。酸の一般的な使用例としては、酢酸(酢に3〜5%程度含有)、硫酸(自動車のバッテリーの電解液に使用)、酒石酸(ベーキングに使用する)などがある。これら三つの例が示すように、酸は溶液、液体、固体であることができる。さらに塩化水素などのように、気体の状態でも酸であることができる。 一般に、プロトン (H+) を与える、または電子対を受け取る化学種。化学の歴史の中で、概念の拡大をともないながら定義が考え直されてきたことで、何種類かの酸の定義が存在する。 酸としてはたらく性質を酸性(さんせい)という。一般に酸の強さは酸性度定数 Ka またはその負の常用対数 によって定量的に表される。 酸や塩基の定義は相対的な概念であるため、ある系で酸である物質が、別の系では塩基としてはたらくことも珍しくはない。例えば水は、アンモニアに対しては、プロトンを与えるブレンステッド酸として作用するが、塩化水素に対しては、プロトンを受け取るブレンステッド塩基として振る舞う。 酸解離定数の大きい酸を強酸、小さい酸を弱酸と呼ぶ。さらに、100%硫酸より酸性の強い酸性媒体のことを、特に超酸(超強酸)と呼ぶことがある。 「—酸」と呼ばれる化合物には、酸味を呈し、その水溶液のpHは7より小さいものが多い。.

新しい!!: ヒ化ガリウムと酸 · 続きを見る »

電子ボルト

物理学において、電子ボルト(エレクトロンボルト、electron volt、記号: eV)とはエネルギーの単位のひとつ。 素電荷(そでんか)(すなわち、電子1個分の電荷の符号を反転した値)をもつ荷電粒子が、 の電位差を抵抗なしに通過すると得るエネルギーが 。.

新しい!!: ヒ化ガリウムと電子ボルト · 続きを見る »

電子移動度

電子移動度(でんしいどうど、electron mobility)とは、固体の物質中での電子の移動のしやすさを示す量であり、本来の表記は,易動度が正しい。したがって、単に移動度という場合はキャリアの移動のしやすさを示す。半導体の場合、キャリアとは、電子および正孔のことである。.

新しい!!: ヒ化ガリウムと電子移動度 · 続きを見る »

電界効果トランジスタ

回路基板上に実装された状態の高出力N型チャネルMOSFET 電界効果トランジスタ(でんかいこうかトランジスタ、, FET)は、ゲート電極に電圧をかけることでチャネル領域に生じる電界によって電子または正孔の濃度を制御し、ソース・ドレイン電極間の電流を制御するトランジスタである。電子と正孔の2種類のキャリアの働きによるバイポーラトランジスタに対し、いずれか1種類のキャリアだけを用いるユニポーラトランジスタである。FETの動作原理は電界を使って電流を制御する点で真空管に類似している。 FETは主に接合型FET(ジャンクションFET, JFET)とMOSFETに大別される。他にも、MESFETなどの種類がある。また、それぞれの種別でチャネルの種類によりさらにn型のものとp型のものに分類される。 このページでは主にSiなどの無機半導体について述べる。有機半導体を用いたものについては有機電界効果トランジスタを参照。.

新しい!!: ヒ化ガリウムと電界効果トランジスタ · 続きを見る »

HBT

ヘテロ接合バイポーラトランジスタ (Heterojunction Bipolar Transistor) は、ヘテロ接合の隣りにベース構造を有するバイポーラジャンクショントランジスタ (BJT) のことで、英語の単語の頭文字をとってHBT(エイチビーティー)と呼ばれる。ヘテロ構造の効果により、バイポーラトランジスタに比べ、電流増幅率を落とさずに動作速度が向上することができ、最高で500GHz以上で動作する超高速トランジスタの構造の名称である。構造的にはベース層の片側のみをヘテロ構造にしたSHBTと両側をヘテロ接合にしたDHBTなどがある。.

新しい!!: ヒ化ガリウムとHBT · 続きを見る »

IARC発がん性リスク一覧

IARC発がん性リスク一覧は、国際がん研究機関 (IARC) による発がん性リスクの一覧である。この表の見方は項目発癌性を参照のこと。 一部の項目については、最新の情報を反映していないおそれがある。最新の分類については IARC のウェブサイト で確認されたい。.

新しい!!: ヒ化ガリウムとIARC発がん性リスク一覧 · 続きを見る »

III-V族半導体

III-V族半導体(さんごぞくはんどうたい)は、III族元素とV族元素を用いた半導体である。III-V族化合物半導体とも呼ぶ。代表的なIII族元素としてはアルミニウム(Al)・ガリウム(Ga)・インジウム(In)、V族元素としては窒素(N)・リン(P)・ヒ素(As)・アンチモン(Sb)がある。この他にホウ素(B)・タリウム(Tl)・ビスマス(Bi)もIII-V族半導体を構成する元素である。またV族元素として窒素を用いた窒化ガリウム(GaN)・窒化アルミニウム(AlN)・窒化インジウム(InN)などを特に窒化物半導体と呼ぶ。 代表的な半導体であるケイ素(Si)と比較して、III-V族化合物半導体はその多くが直接遷移型の半導体であるため、発光ダイオード・レーザダイオードをはじめとする発光素子に用いられる。またケイ素とはバンドギャップエネルギーが異なるため、フォトダイオードといった受光素子にも用いられる。例えば現在の赤・緑・青色などの発光ダイオードは、ほぼすべてIII-V族半導体を材料としている。また高い電子移動度を利用して、極超短波以上の増幅には、ガリウムヒ素(GaAs)を用いた電界効果トランジスタが広く使われている。 これらIII族元素とV族元素を1種類ずつ組み合わせたガリウムヒ素・リン化インジウム(InP)・窒化ガリウムといった化合物半導体を2元系混晶と呼ぶ。さらに結晶基板(ガリウムヒ素・リン化インジウム・エピタキシャル窒化ガリウムなど)の上での結晶成長により、インジウム・ガリウム・ヒ素(InGaAs)・ゲイナス(GaInNAs)といった3元系・4元系の化合物半導体も作成できる。3元以上の混晶では、その組成比によってバンドギャップエネルギー・格子定数・光学特性を連続的に変化させられる。また結晶成長の際に格子定数を一定に保ったままバンドギャップエネルギーを変化させた層を組み合わせれば、量子井戸構造などの量子効果も得られる。.

新しい!!: ヒ化ガリウムとIII-V族半導体 · 続きを見る »

SOI

従来のMOSFETの構造 SOIを用いたMOSFETの構造 SOI (Silicon on Insulator) は、CMOS LSIの高速性・低消費電力化を向上させる技術である。 従来の集積回路上のMOSFETは、素子間分離をPN接合の逆バイアスによって形成するが、寄生ダイオードやサブストレートとの間に浮遊容量が生じ、信号の遅延やサブストレートへのリーク電流が発生していた。この浮遊容量を低減するため、MOSFETのチャネルの下に絶縁膜を形成し、浮遊容量を減らしたものがSOIである。また、このような絶縁膜を内包したウエハをSOIウエハと呼び、従来のウエハはSOIウエハと区別するためにバルクシリコン(バルクウエハ)と呼ばれる場合がある。 浮遊容量はCMOSのMOSFETに対して、スイッチング時の遅延/電流を増加させる要因であるため、浮遊容量の低減は高速度化/低消費電力化の両方の面で有利になる。 また2次元的な素子間分離にもpn接合の逆方向バイアスによるものではなく、素子下の絶縁膜と結合させた絶縁材を形成することで、完全に分離されたMOSFETを構成できるようにしている。この場合、寄生ダイオードによって意図せず生成されるバイポーラトランジスタを抑制することができ、素子間の浮遊容量/リーク電流を低減することができる。 また素子間分離のためのウェルも小さくできるため、PMOS-NMOS間の距離を小さくでき、配置密度を高めることができる。 SOIウエハの製造法は、SIMOX(Separation by IMplantation of OXygen)方式と張り合わせ方式の2種類がある。SIMOX方式はIBMが中心となって開発した技術で、酸素分子をイオン注入によりシリコン結晶表面から埋め込み、それを高熱で酸化させることでシリコン結晶中に酸化シリコンの絶縁膜を形成する。現在ではSIMOX方式よりさらに表面特性の優れたSmartCut方式が主流になっている。これは、バルクウエハの表面に酸化膜を形成したのちもう一枚の加工されていないバルクウエハと表面同士で貼り合わせ、先のウエハを剥離して作成するものである。剥離厚は酸化膜より深部に事前に注入された水素イオンの表面からの距離によって制御され、剥離面は化学機械研磨(CMP)により表面仕上げされる。 SOIウエハの製造コストは、バルクシリコンのウエハに比べ工程が増えるためその分高価になる。.

新しい!!: ヒ化ガリウムとSOI · 続きを見る »

比重

比重(ひじゅう)とは、ある物質の密度(単位体積当たり質量)と、基準となる標準物質の密度との比である。通常、固体及び液体については水、気体については、同温度、同圧力での空気を基準とする。.

新しい!!: ヒ化ガリウムと比重 · 続きを見る »

準位

準位(じゅんい)とは、量子力学の用語で、あるエネルギーをもつ量子状態のこと。エネルギー準位。.

新しい!!: ヒ化ガリウムと準位 · 続きを見る »

時定数

物理学、工学および社会科学において、時定数(じていすう、ときていすう、ときじょうすう、time constant 項目「時定数」より。)とは、線型時不変系(LTIシステム)における1次の周波数応答を示す値である。ギリシャ文字の τ で表される。過渡現象の応答速度の指標としても理解される。の邦訳語としては「ときていすう」であるとする説もある。学術用語としては「じていすう」、JISでは「ときじょうすう」としている。 例として電子回路のRC回路(抵抗器-コンデンサ)、RL回路(抵抗器-コイル)がある。その値は磁気テープ、送信機、受信機、レコードおよび再生装置、デジタルフィルタなどの信号処理系における周波数応答の特徴を表すために用い、1次の線型系としてモデル化および近似する。同じような式の形であっても、電磁気学、機械工学、社会科学の順に、時定数が大きくなり、システムの監視、状態の管理方法が異なる。電気的手法よりも空圧を制御の積分や微分に使うような制御システムも時定数を用いる例として挙げられる。 物理的あるいは化学的には、時定数はシステムが目標値の (1 -e-1) に達するまでの時間を示す。あるいは外力が取り除かれたときに初期値の約37%に達するのに必要な時間でもある。工学、社会科学でも、約63.2%に達するまでの時間を取ると、電磁気学ではマイクロ秒、ミリ秒の事象が多く、機械工学ではミリ秒、秒の単位が多い。社会科学では、時間、日、週、月、年などの単位になることもある。時定数の大きさが、システムの分類に役立つ。.

新しい!!: ヒ化ガリウムと時定数 · 続きを見る »

ここにリダイレクトされます:

GaAsガリウム・砒素ガリウムヒ素ガリウム砒素砒化ガリウム

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »